从0到1构建法律案例AI检索系统:一位AI应用架构师的实战历程
摘要/引言
作为一名AI应用架构师,我曾参与过多个垂直领域的AI系统构建,但法律案例检索是我遇到过最具挑战性的场景之一——既要解决"精准度"(法律文本的语义歧义性),又要解决"效率"(海量案例的快速召回),还要兼顾"可用性"(非技术背景法律从业者的使用体验)。
传统法律检索的痛点不言而喻:
- 依赖关键词匹配,无法理解语义(比如"民间借贷利息过高"和"民间借贷利率超LPR四倍"是同一问题,但关键词完全不同);
- 案例库浩如烟海(仅中国裁判文书网就有超1.3亿份文书),人工筛选耗时耗力;
- 检索结果缺乏法律逻辑整合,需要用户自行梳理案例中的"争议焦点"和"裁判要旨"。
本文将分享我如何用检索增强生成(RAG)架构解决这些问题——通过"向量语义检索+大模型逻辑总结",构建一个能理解法律语义、快速召回相关案例、并生成结构化回答的AI检索系统。
读完本文,你将掌握:
- 法律AI检索系统的核心架构设计;
- 从数据预处理到向量数据库构建的完整流程;
- 大模型与检索系统的联动技巧;
- 法律场景下的性能优化与踩坑经验。

订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



