大大大反派
码龄1年
关注
提问 私信
  • 博客:48,268
    动态:140
    48,408
    总访问量
  • 37
    原创
  • 8,235
    排名
  • 2,225
    粉丝
  • 247
    铁粉
  • 学习成就

个人简介:自定义

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖北省
  • 加入CSDN时间: 2023-09-30
博客简介:

2301_80038570的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    387
    当月
    624
个人成就
  • 获得1,804次点赞
  • 内容获得1,074次评论
  • 获得1,693次收藏
  • 代码片获得108次分享
创作历程
  • 37篇
    2024年
成就勋章
  • 入选《本周创作者榜》第54名
  • 入选《人工智能领域内容榜》第4名
TA的专栏
  • C++
    3篇
  • 数据结构【C】
    5篇
  • JAVA_Study
    7篇
  • 数据结构【java】
    2篇
  • c语言学习记录
    4篇
兴趣领域 设置
  • 人工智能
    机器学习
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

深入了解决策树---机器学习中的经典算法

作为机器学习的经典算法,决策树以其直观性和易用性在实际应用中占据重要地位。从分类到回归、从单一模型到集成学习,决策树展现了广阔的适用场景。通过结合剪枝、超参数优化和集成学习,决策树的性能得到了极大提升。未来,随着数据规模和计算能力的增长,决策树仍将是机器学习领域不可或缺的核心技术。决策树是一种兼具可解释性和灵活性的机器学习模型,虽然在面对高维度和复杂数据时表现有限,但其作为集成学习的基础仍然是不可或缺的工具。未来,结合深度学习和自动化超参数调整的技术,将为决策树的应用提供更多可能性。
原创
发布博客 昨天 13:08 ·
1115 阅读 ·
80 点赞 ·
58 评论 ·
66 收藏

自监督学习:从概念到应用的全面解析

自监督学习(Self-Supervised Learning, SSL)是近年来机器学习领域的重要进展,它以未标注数据为核心,通过设计自生成标签的任务,挖掘数据的潜在结构和特征表示。自监督学习的出现为机器学习注入了新的活力,在利用未标注数据、减少标注成本方面具有显著优势。本文将详细介绍自监督学习的核心概念、主要方法、典型应用,以及未来的研究方向,辅以代码示例,帮助理解这一技术的发展潜力。自监督学习是一种特殊形式的无监督学习,它通过数据本身生成标签,将学习任务转化为预测任务。
原创
发布博客 2024.11.23 ·
1090 阅读 ·
97 点赞 ·
69 评论 ·
85 收藏

继续努力

发布动态 2024.11.21

深度学习三大框架对比与实战:PyTorch、TensorFlow 和 Keras 全面解析

PyTorch 是 Facebook 推出的动态计算图框架,以灵活的调试能力和面向对象的设计深受研究人员喜爱。其代码风格与 Python 十分相似,非常直观。主要特点:动态计算图:支持即时调整网络结构,调试更加灵活。社区支持:在学术领域占据主流地位。简单易用:轻松与其他 Python 库集成,如 Numpy。PyTorch以灵活性和动态特性,适合研究人员。TensorFlow提供全面的工具链和部署能力,是工业级开发的首选。Keras以其简单性和模块化设计,非常适合新手入门和快速原型。
原创
发布博客 2024.11.20 ·
1734 阅读 ·
95 点赞 ·
87 评论 ·
103 收藏

AIGC ---探索AI生成内容的未来市场

AI生成内容市场充满机遇,其未来将由更强大的模型、更高效的数据处理技术和多样化的应用场景推动。无论是商业还是个人创作,AIGC正逐步成为生产力工具的重要组成部分。通过本文的代码实践,希望能为您带来启发,共同探索AIGC的无限可能!
原创
发布博客 2024.11.17 ·
2509 阅读 ·
89 点赞 ·
70 评论 ·
73 收藏

DAMODEL丹摩|FLUX.1 和 ComfyUI:从部署到上手,轻松驾驭!

黑森林实验室推出了一款名为FLUX.1的先进图像生成模型,根据不同用户需求,提供了三种独特的版本。:作为专为企业打造的强大闭源版本,它提供卓越的性能和生成能力,尤其在理解提示词、提高视觉质量和细节表现,以及输出多样性方面表现优异,非常适合需要高效图像生成的企业。企业用户可以通过官方API使用此版本,并享受定制化服务。:这是一个开放源代码的版本,但有商用限制。基于FLUX.1-pro开发,保留了它的高精度提示词识别能力,并对效率进行了优化,适合开发者用于研究和开发项目。
原创
发布博客 2024.11.14 ·
1076 阅读 ·
98 点赞 ·
65 评论 ·
90 收藏

DAMODEL丹摩|Llama3.1:从设置到操作,轻松上手全攻略!

开源的大语言模型(LLM)生态系统依然生机勃勃,各种引人注目的模型不断涌现,包括像LLaMA和Alpaca这样的国际项目,以及国内开发的ChatGLM、BaiChuan和InternLM(书生·浦语)等模型。这些创新为开发者提供了在本地进行部署和个性化定制的绝佳机会,使其能够创建具有独特价值的应用程序。在2024年7月23日,Meta公司发布了备受期待的Llama 3.1系列,这一举措为开源模型的发展设立了新的标杆。
原创
发布博客 2024.11.13 ·
971 阅读 ·
102 点赞 ·
85 评论 ·
102 收藏

DAMODEL丹摩|CogVideoX-2b:从安装到上线,轻松搞定全过程!

CogVideoX的推出标志着视频生成技术的一次重大突破。过去,如何在保持高效的同时提升视频质量一直是一个难题,但CogVideoX 通过其先进的3D变分自编码器,成功将视频数据压缩至原来的2%,大幅降低了资源消耗,并确保视频帧之间的流畅连贯。其独特的3D旋转位置编码技术让视频在时间轴上如行云流水般自然呈现,每个画面都充满了生动的活力。同时,智谱AI的端到端视频理解模型能够精准地解析用户指令,生成内容丰富且高度相关的视频作品。
原创
发布博客 2024.11.12 ·
1154 阅读 ·
139 点赞 ·
112 评论 ·
138 收藏

ONLYOFFICE 8.2深度测评:集成PDF编辑、数据可视化与AI功能的强大办公套件

PDF编辑:支持直接在文档编辑器中打开并编辑PDF文件。格式转换:用户可轻松将文档转换为PDF,满足不同场景下的文件格式需求。ONLYOFFICE 8.2引入了基于AI的文档摘要功能,能够自动生成文档的概要内容。该功能通过智能算法分析文档内容,并提取关键信息,生成简洁的摘要。对于需要处理大量文档的用户而言,这无疑是一个节省时间的利器,使得信息提取更加高效。自动生成摘要:用户无需手动阅读整篇文档,AI能够自动生成重要信息的提要。支持多语言:AI功能支持多种语言,方便不同地区的用户使用。
原创
发布博客 2024.11.09 ·
2574 阅读 ·
81 点赞 ·
57 评论 ·
76 收藏

AIGC--如何在内容创作中合理使用AI生成工具?

AI生成内容(AIGC)的工具在内容创作中扮演着越来越重要的角色。合理使用这些工具,不仅能够帮助创作者提高效率,还能激发创意、优化流程。然而,使用不当可能会导致内容缺乏深度、出现重复或难以表达个性。因此,本文将深入探讨如何在创作流程中合理使用AI生成工具,以便从多个角度对内容进行个性化和定制化,并分享大量示例代码,帮助创作者更好地利用AIGC工具。
原创
发布博客 2024.11.08 ·
2721 阅读 ·
89 点赞 ·
63 评论 ·
69 收藏

AIGC在游戏设计中的应用及影响

AIGC技术为游戏设计带来了革命性的变化。通过自动化内容生成、智能对话系统、NPC行为优化等多方面的应用,AIGC不仅提升了游戏的开发效率,还增强了游戏的可玩性、个性化和玩家体验。随着技术的进一步发展,AIGC将在未来游戏开发中发挥更加重要的作用,为玩家带来更加丰富和创新的游戏体验。在实际开发中,AIGC技术可以通过多种方式应用于游戏设计,从简单的地图生成到复杂的AI行为模拟,再到游戏剧情的生成,AIGC无疑是推动游戏行业创新的一个重要力量。
原创
发布博客 2024.11.06 ·
2639 阅读 ·
135 点赞 ·
99 评论 ·
125 收藏

AIGC对传统内容创作行业的冲击

面对未来,行业需要积极应对这些挑战,探索AIGC与传统创作的最佳结合点,以实现更高质量的内容创作。随着技术的不断进步,AIGC不仅提高了内容创作的效率,也改变了创作的方式和理念。这些内容可以是文本、图像、音频或视频,AIGC系统通过学习大量数据,从中提取规律和模式,实现自动创作。通过训练大型语言模型,AIGC能够理解和生成语言,实现内容的自动化创作。未来,AIGC将更加强调个性化,根据用户的喜好和需求生成内容。未来的AIGC将不仅限于文本,还将结合图像、音频和视频,实现多模态内容的生成。
原创
发布博客 2024.11.03 ·
2984 阅读 ·
101 点赞 ·
85 评论 ·
98 收藏

生成对抗网络(GAN)如何推动AIGC的发展

生成对抗网络(GAN)已经成为推动人工智能生成内容(AIGC)发展的重要力量。通过不断的技术创新和应用扩展,GAN不仅在图像生成、文本生成、音频生成等领域展示了其巨大潜力,还带来了许多新的挑战和伦理问题。随着技术的不断进步,GAN的未来发展将会更加多样化和深入,值得我们持续关注与探索。通过本文的讨论,我们希望能够帮助读者更好地理解GAN的工作原理、应用场景以及未来的发展趋势,为相关研究和应用提供参考。同时,我们也希望引发对GAN带来的伦理和社会问题的深入思考,推动技术与社会的和谐发展。
原创
发布博客 2024.11.01 ·
5675 阅读 ·
165 点赞 ·
122 评论 ·
137 收藏