Google Cloud Vertex AI 是 Google 云平台上统一的机器学习开发平台,可将数据准备、模型训练、超参搜索、模型评估、部署与监控整合到一个端到端的工作流中。它不仅能帮你管理自研 ML 模型,也能直接调用谷歌最新的大模型(如 Gemini)实现生成式 AI 应用。
本文将从定义、实际操作步骤、常见问题与解决技巧、最终总结四个方面,带你全面掌握 Vertex AI。
一、Vertex AI 是什么?
Vertex AI(旧称 AI Platform)是 Google Cloud 的统一机器学习平台,主要提供以下能力:
1. 全流程 ML 生命周期管理
包括:
-
数据准备(Feature Store, DataPrep)
-
模型构建(AutoML、自研模型)
-
模型训练(自定义训练、分布式训练)
-
模型评估(Evaluation、Explainable AI)
-
模型部署与托管(在线预测/批量预测)
-
模型监控(漂移监控、预测日志)
2. 提供强大的模型训练与加速能力
-
支持 GPU、TPU 加速
-
支持分布式训练(multi-worker / multi-chiefs)
-
可容纳 TensorFlow、PyTorch、XGBoost、自定义 Docker
3. 支持最新 Google 大模型 Gemini 系列
包括:
-
Gemini Pro
-
Gemini Flash
-
Gemini Vision/Image Understanding
-
Gemini Embeddings
通过 Vertex AI API 就能直接调用。
4. AutoML 全自动建模
适合零基础用户,让 Google 自动选择:
-
特征
-
模型架构
-
超参
-
训练策略
二、Vertex AI 操作全流程(从数据到部署)
以下按机器学习标准流程展示你在 Vertex AI 的完整使用路径。
步骤 1:准备数据
Vertex AI 的数据通常来自以下几类:
-
Google Cloud Storage(GCS) – 最常用,存 CSV/TFRecord/图片等
-
BigQuery – 用于大规模表格数据
-
Vertex Feature Store – 提供在线/离线一致的特征管理
示例:上传数据到 GCS
gsutil cp local_data.csv gs://your-bucket/data/
步骤 2:选择建模方式(AutoML 或 自定义模型)
Option A:使用 AutoML(零代码)
适合对象:
-
表格分类/回归
-
图像分类/检测
-
文本分类
-
视频分类
操作:
-
打开 Vertex AI → Dataset
-
导入数据
-
选择“AutoML Training”
-
配置训练预算(node hours)
-
等待 Google 自动训练
Option B:自定义模型(自研代码)
1. 创建训练脚本(example: TensorFlow)
import tensorflow as tf
def main():
# 加载数据
(x_train, y_train), _ = tf.keras.datasets.mnist.load_data()
x_train = x_train / 255.
model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.save('/tmp/model')
if __name__ == "__main__":
main()
2. 将脚本打包上传 GCS
gsutil cp trainer.py gs://your-bucket/trainer/
3. 创建自定义训练作业(Custom Job)
在控制台按以下参数填写:
-
Container:
us-docker.pkg.dev/vertex-ai/training/tf-gpu.2-11:latest -
Script location:
gs://your-bucket/trainer/trainer.py -
Machine type:
n1-standard-8 -
Accelerator:
NVIDIA Tesla T4(可选) -
Region:
us-central1
步骤 3:训练模型
点击“执行训练”,Vertex AI 会:
-
自动创建训练基础设施
-
分配 GPU/TPU(如有)
-
执行训练脚本
-
保存模型产物(
model/)到 GCS
你可在“Tensorboard”里查看训练日志。
步骤 4:超参数调优(可选)
Vertex AI 支持自动化 HPO(Hyperparameter Optimization):
-
支持 Bayesian Optimization
-
可从 1–50+ 并行 worker
示例参数:
-
learning_rate: [0.0001, 0.1]
-
batch_size: [32, 256]
操作步骤:
Vertex AI → Hyperparameter Tuning Jobs → 新建调参任务
步骤 5:模型评估
Vertex AI 自动提供:
-
混淆矩阵
-
ROC 曲线
-
RMSE/MAE
-
特征重要度(部分模型)
AutoML 模型还支持:
-
Explainable AI(可解释性输出)
步骤 6:模型部署(在线预测 / 批量预测)
在线预测(实时接口)
适用于实时应用,如:
-
推荐系统
-
风控评分
-
图像检测
步骤:
-
Vertex AI → Models → 选择模型
-
Create Endpoint
-
Deploy Model
-
选择机器类型(如
n1-standard-4) -
是否使用 GPU(如需要图像模型)
部署后获得预测 API Endpoint。
调用示例(Python)
from google.cloud import aiplatform
model = aiplatform.Endpoint("your-endpoint-id")
prediction = model.predict({
"instances": [[0.1, 0.2, 0.3]] })
print(prediction)
批量预测(Batch Prediction)
适用于:
-
每天跑批
-
大规模数据预测(10M+ rows)
输入输出均放在 GCS。
三、常见问题与解决技巧
问题 1:训练作业失败 / 找不到依赖包
原因:
-
训练镜像缺少库
-
requirements.txt 没上传
解决:
-
在 Dockerfile 中加入必要依赖
-
或在训练参数中指定
requirements.txt
问题 2:GPU 不生效 / 无法使用 CUDA
原因:
-
训练镜像不支持 GPU
-
选择的区域没有 GPU
解决:
-
使用 Vertex 官方 GPU 镜像:
-
tf-gpu.x.x -
pytorch-gpu.x.x
-
-
推荐区域:
us-central1、us-west4
问题 3:在线预测延迟高
优化方法:
-
提升机器规格
-
增加最小实例数(autoscaling)
-
使用区域靠近用户的 Endpoint
-
对大型模型开启 GPU 部署
问题 4:成本过高
建议:
-
训练时使用 Preemptible GPU(可节省 70%)
-
部署端设置最小实例数为 0
-
清理未使用的 endpoint / model 版本
四、总结
Google Vertex AI 之所以受到企业广泛使用,是因为它提供了统一、可扩展、低运维成本的一站式机器学习平台。无论你是需要训练深度学习模型、自定义 ML Pipeline,还是直接使用 Google 的最新大模型(如 Gemini),Vertex AI 都能满足需求。
注:本文仅供参考,如有遇到账号充值开户或实际操作问题可以评论区留言或私信讨论解决!!!
1266

被折叠的 条评论
为什么被折叠?



