C 小L的位运算
显然,如果两次反置的价格小于等于交换的价格,那么直接全部反置就好了。
反之,由于交换一定低于两次反置,我们尽可能用交换来消去不正确的位置。不正确的位置类型只有00,01,10,11,我们发现,交换任意两个不同类型的某一位,一定可以使得这两个位置正确。那么我们要做的就是尽量使其两两配对,循环O(n)的时间复杂度就能解决。
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e6+7;
int n, m, k;
// int a[N];
// bool v[N];
void sovle()
{
cin>>n>>m>>k;
string a,b,c;
cin>>a>>b>>c;
vector<int>v(4);
for(int i=0;i<n;i++){
if(c[i]=='1'&&a[i]==b[i]||c[i]=='0'&&a[i]!=b[i]){
v[(a[i]-'0')*2+(b[i]-'0')]++;
}
}
if(2*m<=k){
cout<<m*(v[0]+v[1]+v[2]+v[3])<<endl;
return;
}else{
int sum=0;
sort(v.begin(),v.end());
for(int i=0;i<v[0];i++){
int u=max(v[1],max(v[2],v[3]));
if(u==v[1]) v[1]--;
else if(u==v[2]) v[2]--;
else v[3]--;
sum+=k;
}
for(int i=0;i<v[1];i++){
int u=max(v[2],v[3]);
if(u==v[2]) v[2]--;
else v[3]--;
sum+=k;
}
sum+=v[2]*k+(v[3]-v[2])*m;
cout<<sum<<endl;
}
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int ING = 1;
// cin>>ING;
while (ING--)
{
sovle();
}
return 0;
}
L 小L的构造
构造,打表找规律
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long
typedef long long ll;
typedef pair<int, int> PII;
const int N = 1e6+7;
int n, m, k;
// int a[N];
// bool v[N];
void sovle()
{
cin>>n;
if(n<4){
cout<<0<<endl;
}else if(n%6<=2){
int x=1,y=2,z=4,xx=3,yy=5,zz=6;
cout<<n/3<<endl;
for(int i=0;i<n/6;i++){
cout<<x+i*6<<" "<<y+i*6<<" "<<z+i*6<<endl;
cout<<xx+i*6<<' '<<yy+i*6<<' '<<zz+i*6<<endl;
}
}else{
if(n==4||n==5){
cout<<1<<endl;
cout<<1<<" "<<2<<' '<<4<<endl;
return;
}
cout<<n/3<<endl;
cout<<1<<" "<<2<<' '<<4<<endl;
cout<<3<<' '<<5<<' '<<9<<endl;
cout<<6<<' '<<7<<' '<<8<<endl;
int x=10,y=11,z=14,xx=12,yy=13,zz=15;
for(int i=0;i<n/3-3;i++){
if(i%2==0){
cout<<x+i/2*6<<' '<<y+i/2*6<<' '<<z+i/2*6<<endl;
}else cout<<xx+i/2*6<<' '<<yy+i/2*6<<' '<<zz+i/2*6<<endl;
}
}
}
signed main()
{
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int ING = 1;
cin>>ING;
while (ING--)
{
sovle();
}
return 0;
}