如何本地部署DeepSeek

第一步:安装ollama

https://ollama.com/download

打开官网,选择对应版本 

第二步:选择合适的模型

https://ollama.com/

模型名称中的 1.5B、7B、8B 等数字代表模型的参数量(Parameters),其中 B 是英文 Billion(十亿) 的缩写。参数越多,模型通常更“聪明”(能处理更复杂的任务),但对硬件资源(显存、内存)的要求也更高。

个人用户可优先 7B(通用性最佳),若设备较弱则选 1.5B,开发者可选 8B


第三步:安装deepseek模型

ollama run deepseek-r1:1.5b

1、找到对应的命令,复制

2、cmd执行命令,等待安装

第四步:测试

第五步 安装Chatbox

1、打开官网https://chatboxai.app/zh下载

2、点击设置,选择Ollama API;

3、选择安装好的deepseek r1模型,保存即可;

4、部署完成就可以正常使用了。 

基本命令

打开模型

ollama run deepseek-r1:1.5b

退出模型

 /bye

查看帮助

C:\Users\chk>ollama  -h
Large language model runner
 
Usage:
  ollama [flags]
  ollama [command]
 
Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  stop        Stop a running model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command
 
Flags:
  -h, --help      help for ollama
  -v, --version   Show version information
 
Use "ollama [command] --help" for more information about a command.

内容概要:本文详细介绍了如何在本地环境中部署名为 DeepSeek 的工具,用于深度学习模型的可视化和分析。主要内容涵盖了从环境准备、项目克隆、依赖安装到模型配置及服务启动的整个流程。首先明确系统的兼容性和所需的 Python 版本,然后通过 Git 克隆项目,并安装必要的第三方库。接着介绍如何设置深度学习模型文件的位置,使得能够成功加载预训练的模型。之后解释了启动服务后所呈现的交互式Web界面的功能——用户借此平台不仅可以直观地探索模型结构还能监测各个隐藏层的工作状态如激活值分布、权重梯度变化等。最后给出了关于GPU加速的支持指南及其性能上的潜在优势提示。 适合人群:有一定基础的技术开发者或者研究人员,他们希望通过便捷的方法在自己搭建的小型实验室环境下快速评估或改进各种神经网络结构特性。 使用场景及目标:适用于个人研究机构中进行AI实验测试阶段,尤其是在需要详细了解某一特定类型的深层神经网络运作机制并且寻求优化途径的情况下。利用文中提供的方法论可达成对模型内部机理更深层次的认知同时促进技术创新与发展进程。 其他说明:文档不仅包含了每一步骤的具体操作指导还附带了一些实际案例作为补充材料辅助理解整个部署流程。另外也提到了针对可能出现的问题提出了排查思路和解决办法以保障项目的顺利完成。
内容概要:本文主要介绍了一个基于AI的深度学习语言模型DeepSeek的本地部署指南。内容分为四个主要部分。首先介绍了Ollama的安装流程,包括前往官方网站选择匹配系统的软件包下载,并依据不同操作系统完成相应的安装操作。接下来重点阐述了针对不同硬件条件下载合适的DeepSeek版本的方法,从选择所需规模(参数量)到执行具体加载命令均作出详述。还提及了为了方便用户进一步利用Docker以及一个叫Open WebUI工具来进行容器管理和服务提供所做出的一些辅助性指导措施。最后简要说明了怎样在命令终端启动该AI助手以及在浏览器界面上完成初次登录验证。 适合人群:想要将大型预训练AI语言模型应用于本地环境的研究员或者开发者;具有一定软硬件搭建基础知识的人士。 使用场景及目标:适用于想要快速把玩大型语言模型却苦于云服务成本太高或是希望提高对LLM底层机制的理解从而更好地开展后续科研工作的用户。他们能够通过这个指南学会一套通用的大规模语言模型部署解决方案,为将来类似项目的实施打下坚实的基础。 阅读建议:读者应当注意官方提供的最新资料和社区讨论来补充本文未能涉及的部分并且持续关注产品迭代升级消息,另外考虑到文中存在大量的命令操作,请确保实验环境下操作的安全性和可控性,严格按照说明执行各项任务。
内容概要:文章旨在介绍DeepSeek模型在本地的成功部署方法与应用优化策略。首先解释了DeepSeek模型的重要性和本地部署优势,接着针对三种不同硬件配置(低、中、高),给出了详细的硬件准备建议,以确保模型的最佳性能发挥;再则详细说明了Ollama平台、Python、CUDA等相关软件工具的选择与安装步骤;介绍了DeepSeek三大模型(R1-1.5B/R1-7B/R1-32B)的功能特点及选择依据,强调了模型下载注意事项,如磁盘空间预留和稳定网络连接;部署完成后,引导用户体验交互界面对话功能测试,并提供多种个性化互动界面如Chatbox AI和LM Studio的选择与使用说明。最后,对常见的问题进行了汇总,并提出相应的排障技巧。 适用人群:对AI技术感兴趣的开发者、初学者、有一定计算机硬件基础知识的专业人士。 使用场景及目标:帮助企业用户掌握DeepSeek模型本地部署的具体流程和技术要点;提高个人或团队利用AI进行项目开发的实际操作能力,增强自然语言处理的应用效果;促进开发者社区成员间的技术交流与资源共享,共同推动本地AI部署的发展。 其他说明:文章内容覆盖详尽的操作指南和故障排除方案,附有具体的命令行指令及图形化操作截图,使读者更容易理解每一步骤。无论是零基础入门的新手还是已有经验的研究人员,都能在这里获得宝贵的学习资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值