✍✍计算机毕设编程指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡
Java、Python、小程序、大数据实战项目集
⚡⚡文末获取源码
高校学生职业推荐系统-研究背景
一、课题背景 在当前就业市场竞争日益激烈的背景下,高校学生面临的职业选择难题愈发突出。每个学生都有其独特的兴趣、能力和期望,然而,传统的职业指导方式往往难以满足个性化需求。因此,开发一套能够针对高校学生特点进行职业推荐的系统显得尤为重要。
二、现有解决方案存在的问题 目前市场上的职业推荐服务存在一些不足,如推荐结果缺乏针对性、算法透明度不高、用户互动性不强等问题。这些问题限制了职业推荐系统的实际应用效果,使得学生难以获得真正符合自身发展的职业建议。
三、课题的研究目的 本课题旨在设计并实现一个基于Python的高校学生职业推荐系统,通过先进的数据分析和机器学习技术,提供更加精准、个性化的职业推荐服务,帮助学生更好地规划职业生涯。
四、课题的价值和意义 理论意义:本课题将探索数据挖掘、机器学习在职业推荐领域的应用,丰富相关理论研究,为后续研究提供参考。 实际意义:系统实施后,将有效提升高校学生的职业规划能力,促进教育资源与社会需求的对接,为社会培养更多高素质人才。
高校学生职业推荐系统-技术
开发语言:Java+Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
高校学生职业推荐系统-视频展示
【计算机毕设选题推荐】基于Python的高校学生职业推荐系统的设计与实现 【附源码+数据库+部署】
高校学生职业推荐系统-图片展示












高校学生职业推荐系统-代码展示
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
# 示例数据
# 假设我们有以下用户和职业数据
user_data = {
'user_id': [1, 2, 3, 4, 5],
'interests': ['technology, programming', 'medicine, health', 'art, design', 'business, marketing', 'education, teaching'],
'gpa': [3.5, 3.8, 3.2, 3.9, 3.6],
'experience': [1, 0, 2, 1, 3]
}
career_data = {
'career_id': ['tech_dev', 'doctor', 'artist', 'marketer', 'teacher'],
'field': ['technology', 'medicine', 'art', 'business', 'education'],
'experience_required': [1, 4, 2, 1, 2],
'gpa_threshold': [3.0, 3.5, 3.0, 3.2, 3.4]
}
# 转换为DataFrame
users_df = pd.DataFrame(user_data)
careers_df = pd.DataFrame(career_data)
# 特征向量化
tfidf_vectorizer = TfidfVectorizer()
interests_tfidf = tfidf_vectorizer.fit_transform(users_df['interests'])
# 合并特征
features_df = users_df[['gpa', 'experience']].join(pd.DataFrame(interests_tfidf.toarray()))
# 创建推荐模型
def create_recommendation_model():
pipeline = Pipeline([
('scaler', StandardScaler()),
('knn', NearestNeighbors(n_neighbors=3))
])
pipeline.fit(features_df)
return pipeline
# 训练模型
recommendation_model = create_recommendation_model()
# 推荐函数
def recommend_careers(new_user_features, model):
# 预测最近邻的用户
distances, indices = model.knn_.kneighbors(new_user_features)
# 获取推荐的用户ID
recommended_user_ids = users_df.iloc[indices[0]]['user_id'].values
# 获取对应的职业推荐
recommended_careers = careers_df[careers_df['career_id'].isin(recommended_user_ids)]
return recommended_careers
# 示例:为一个新的用户推荐职业
new_user_features = tfidf_vectorizer.transform(['programming, technology'])
new_user_features = pd.DataFrame(new_user_features.toarray()).join(pd.DataFrame({'gpa': [3.7], 'experience': [1]}))
# 生成推荐
recommended_careers = recommend_careers(new_user_features, recommendation_model)
print(recommended_careers)
高校学生职业推荐系统-结语
感谢大家的关注与支持,如果你对我们的高校学生职业推荐系统感兴趣,请不要吝啬你的点赞、投币和收藏,一键三连是对我们最大的鼓励。同时,欢迎在评论区留下你的宝贵意见,一起探讨职业规划的未来
⚡⚡✍✍计算机毕设编程指导师**
Java、Python、小程序、大数据实战项目集
⚡⚡有技术问题或者获取源代码!欢迎在评论区一起交流!
⚡⚡大家点赞、收藏、关注、有问题都可留言评论交流!
⚡⚡有什么问题可以在主页个人空间上↑↑↑联系咨询我~
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
579

被折叠的 条评论
为什么被折叠?



