【计算机毕设选题推荐】基于Python的高校学生职业推荐系统的设计与实现 【附源码+数据库+部署】

✍✍计算机毕设编程指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡
Java、Python、小程序、大数据实战项目集

⚡⚡文末获取源码

高校学生职业推荐系统-研究背景

一、课题背景 在当前就业市场竞争日益激烈的背景下,高校学生面临的职业选择难题愈发突出。每个学生都有其独特的兴趣、能力和期望,然而,传统的职业指导方式往往难以满足个性化需求。因此,开发一套能够针对高校学生特点进行职业推荐的系统显得尤为重要。

二、现有解决方案存在的问题 目前市场上的职业推荐服务存在一些不足,如推荐结果缺乏针对性、算法透明度不高、用户互动性不强等问题。这些问题限制了职业推荐系统的实际应用效果,使得学生难以获得真正符合自身发展的职业建议。

三、课题的研究目的 本课题旨在设计并实现一个基于Python的高校学生职业推荐系统,通过先进的数据分析和机器学习技术,提供更加精准、个性化的职业推荐服务,帮助学生更好地规划职业生涯。

四、课题的价值和意义 理论意义:本课题将探索数据挖掘、机器学习在职业推荐领域的应用,丰富相关理论研究,为后续研究提供参考。 实际意义:系统实施后,将有效提升高校学生的职业规划能力,促进教育资源与社会需求的对接,为社会培养更多高素质人才。

高校学生职业推荐系统-技术

开发语言:Java+Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

高校学生职业推荐系统-视频展示

【计算机毕设选题推荐】基于Python的高校学生职业推荐系统的设计与实现 【附源码+数据库+部署】

高校学生职业推荐系统-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

高校学生职业推荐系统-代码展示

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.neighbors import NearestNeighbors
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

# 示例数据
# 假设我们有以下用户和职业数据
user_data = {
    'user_id': [1, 2, 3, 4, 5],
    'interests': ['technology, programming', 'medicine, health', 'art, design', 'business, marketing', 'education, teaching'],
    'gpa': [3.5, 3.8, 3.2, 3.9, 3.6],
    'experience': [1, 0, 2, 1, 3]
}

career_data = {
    'career_id': ['tech_dev', 'doctor', 'artist', 'marketer', 'teacher'],
    'field': ['technology', 'medicine', 'art', 'business', 'education'],
    'experience_required': [1, 4, 2, 1, 2],
    'gpa_threshold': [3.0, 3.5, 3.0, 3.2, 3.4]
}

# 转换为DataFrame
users_df = pd.DataFrame(user_data)
careers_df = pd.DataFrame(career_data)

# 特征向量化
tfidf_vectorizer = TfidfVectorizer()
interests_tfidf = tfidf_vectorizer.fit_transform(users_df['interests'])

# 合并特征
features_df = users_df[['gpa', 'experience']].join(pd.DataFrame(interests_tfidf.toarray()))

# 创建推荐模型
def create_recommendation_model():
    pipeline = Pipeline([
        ('scaler', StandardScaler()),
        ('knn', NearestNeighbors(n_neighbors=3))
    ])
    pipeline.fit(features_df)
    return pipeline

# 训练模型
recommendation_model = create_recommendation_model()

# 推荐函数
def recommend_careers(new_user_features, model):
    # 预测最近邻的用户
    distances, indices = model.knn_.kneighbors(new_user_features)
    
    # 获取推荐的用户ID
    recommended_user_ids = users_df.iloc[indices[0]]['user_id'].values
    
    # 获取对应的职业推荐
    recommended_careers = careers_df[careers_df['career_id'].isin(recommended_user_ids)]
    return recommended_careers

# 示例:为一个新的用户推荐职业
new_user_features = tfidf_vectorizer.transform(['programming, technology'])
new_user_features = pd.DataFrame(new_user_features.toarray()).join(pd.DataFrame({'gpa': [3.7], 'experience': [1]}))

# 生成推荐
recommended_careers = recommend_careers(new_user_features, recommendation_model)
print(recommended_careers)

高校学生职业推荐系统-结语

感谢大家的关注与支持,如果你对我们的高校学生职业推荐系统感兴趣,请不要吝啬你的点赞、投币和收藏,一键三连是对我们最大的鼓励。同时,欢迎在评论区留下你的宝贵意见,一起探讨职业规划的未来

⚡⚡✍✍计算机毕设编程指导师**
Java、Python、小程序、大数据实战项目集
⚡⚡有技术问题或者获取源代码!欢迎在评论区一起交流!
⚡⚡大家点赞、收藏、关注、有问题都可留言评论交流!
⚡⚡有什么问题可以在主页个人空间上↑↑↑联系咨询我~
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值