✍✍计算机毕设编程指导师**
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。
⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流!
⚡⚡
Java、Python、小程序、大数据实战项目集
⚡⚡文末获取源码
文章目录
基于Python的适老化(老年人)健康预警系统-研究背景
一、课题背景 随着社会老龄化的加剧,老年人群体的健康管理成为社会关注的焦点。老年人由于生理机能的下降,更易受到各种疾病的侵扰。因此,如何利用现代技术手段,为老年人提供及时、有效的健康预警,成为了一个亟待解决的问题。
二、现有解决方案存在的问题 当前市场上虽然存在一些健康管理系统,但它们往往忽视了老年人的使用习惯和需求,操作复杂,数据反馈不及时,缺乏针对性。这些问题导致现有系统难以在老年人群中普及,使得老年人在健康管理上得不到应有的支持。
三、课题的研究目的与价值意义 本课题旨在设计并实现一套基于Python的适老化健康预警系统,旨在解决现有系统在老年人群体中应用不足的问题。其理论意义在于探索信息技术在老年健康管理领域的应用新模式,实际意义则体现在提高老年人生活质量,降低健康风险,为家庭和社会带来积极影响。
基于Python的适老化(老年人)健康预警系统-技术
开发语言:Java+Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts
基于Python的适老化(老年人)健康预警系统-视频展示
【25届计算机毕设选题推荐】 基于Python的适老化(老年人)健康预警系统的设计与实现 【附源码+部署+讲解】
基于Python的适老化(老年人)健康预警系统-图片展示



















基于Python的适老化(老年人)健康预警系统-代码展示
from flask import Flask, request, jsonify
from sklearn.ensemble import IsolationForest
import numpy as np
import joblib
app = Flask(__name__)
# 假设我们使用joblib来持久化存储模型
MODEL_FILE = 'isolation_forest_model.joblib'
# 初始化用户数据和模型
user_data = {}
model = None
def load_model():
global model
try:
model = joblib.load(MODEL_FILE)
except FileNotFoundError:
model = None
def save_model():
global model
joblib.dump(model, MODEL_FILE)
@app.route('/collect_data', methods=['POST'])
def collect_data():
data = request.json
user_id = data.get('user_id')
health_data = data.get('health_data')
# 存储用户数据
user_data[user_id] = health_data
return jsonify({"status": "success", "message": "Data collected successfully"})
@app.route('/train_model', methods=['GET'])
def train_model():
global model
# 将所有用户数据合并成一个numpy数组
all_data = np.array([item for sublist in user_data.values() for item in sublist])
# 使用隔离森林算法训练模型
model = IsolationForest(contamination=0.01)
model.fit(all_data)
# 保存模型
save_model()
return jsonify({"status": "success", "message": "Model trained successfully"})
@app.route('/predict', methods=['POST'])
def predict():
data = request.json
user_id = data.get('user_id')
new_data = np.array(data.get('new_data')).reshape(1, -1)
# 加载模型
load_model()
# 使用模型进行预测
if model is not None:
prediction = model.predict(new_data)
if prediction == -1:
return jsonify({"status": "warning", "message": "Potential health risk detected"})
else:
return jsonify({"status": "normal", "message": "No health risk detected"})
else:
return jsonify({"status": "error", "message": "Model not trained yet"})
if __name__ == '__main__':
load_model() # 尝试加载已保存的模型
app.run(debug=True)
基于Python的适老化(老年人)健康预警系统-结语
亲爱的同学们,感谢大家的关注与支持。这个项目是我们团队对老年健康管理领域的深入探索,希望能为老年人的健康保驾护航。如果你对我们的项目感兴趣,请不要吝啬你的点赞、投币和收藏,一键三连是对我们最大的鼓励。同时,欢迎在评论区留下你的宝贵意见,我们期待与你的交流!
⚡⚡✍✍计算机毕设编程指导师**
Java、Python、小程序、大数据实战项目集
⚡⚡有技术问题或者获取源代码!欢迎在评论区一起交流!
⚡⚡大家点赞、收藏、关注、有问题都可留言评论交流!
⚡⚡有什么问题可以在主页个人空间上↑↑↑联系咨询我~
⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。

被折叠的 条评论
为什么被折叠?



