自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(53)
  • 收藏
  • 关注

原创 Python训练营打卡Day53(2025.6.13)

nn.sequential容器:适合于按顺序运算的情况,简化前向传播写法。leakyReLU介绍:避免relu的神经元失活现象。对抗生成网络的思想:关注损失从何而来。

2025-06-13 22:54:43 138

原创 Python训练营打卡Day52(2025.6.12)

各部分参数的调整心得。

2025-06-12 23:01:19 69

原创 Python训练营打卡Day51(2025.6.11)

【代码】Python训练营打卡Day51(2025.6.11)

2025-06-11 23:43:57 154

原创 Python训练营打卡Day50(2025.6.10)

针对预训练模型的训练策略。CBAM放置位置的思考。resnet结构解析。

2025-06-10 15:20:14 136

原创 Python训练营打卡Day49(2025.6.9)

【代码】Python训练营打卡Day49(2025.6.9)

2025-06-09 23:53:45 193

原创 Python训练营打卡Day48(2025.6.8)

卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制。随机张量的生成:torch.randn函数。

2025-06-08 23:57:14 400

原创 Python训练营打卡Day47(2025.6.7)

【代码】Python训练营打卡Day47(2025.6.7)

2025-06-07 23:42:58 105

原创 Python训练营打卡Day46(2025.6.6)

什么是注意力:注意力家族,类似于动物园,都是不同的模块,好不好试了才知道。不同CNN层的特征图:不同通道的特征图。通道注意力:模型的定义和插入的位置。通道注意力后的特征图和热力图。

2025-06-06 22:08:53 226

原创 Python训练营打卡Day45(2025.6.5)

tensorboard在cifar上的实战:MLP和CNN模型。tensorboard的发展历史和原理。效果展示如下,很适合拿去组会汇报撑页数。tensorboard的常见操作。

2025-06-05 23:29:18 150

原创 Python训练营打卡Day44(2025.6.4)

预训练代码实战:resnet18。图像预训练模型的发展史。常见的分类预训练模型。

2025-06-04 23:13:52 940

原创 Python训练营打卡Day43(2025.6.2)

【代码】Python训练营打卡Day43(2025.6.2)

2025-06-02 23:37:35 195

原创 Python训练营打卡Day42(2025.6.1)

hook函数的模块钩子和张量钩子。Grad-CAM的示例。

2025-06-01 23:55:05 128

原创 Python训练营打卡Day41(2025.5.31)

Flatten -> Dense (with Dropout,可选) -> Dense (Output)1. 输入 → 卷积层 → Batch归一化层(可选) → 池化层 → 激活函数 → 下一层。batch归一化:调整一个批次的分布,常用与图像数据。特征图:只有卷积操作输出的才叫特征图。调度器:直接修改基础学习率。卷积神经网络定义的写法。

2025-05-31 23:57:48 450

原创 Python训练营打卡Day40(2025.5.30)

dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。彩色和灰度图片测试和训练的规范写法:封装在函数中。

2025-05-30 23:40:37 430

原创 Python训练营打卡Day39(2025.5.29)

batchisize和训练的关系。图像数据的格式:灰度和彩色数据。

2025-05-29 23:31:17 213

原创 Python训练营打卡Day38(2025.5.27)

Dataset类的__getitem__和__len__方法(本质是python的特殊方法)minist手写数据集的了解。Dataloader类。

2025-05-28 00:08:42 204

原创 Python训练营打卡Day37(2025.5.26)

保存全部信息checkpoint,还包含训练状态。过拟合的判断:测试集和训练集同步打印指标。

2025-05-28 00:05:35 117

原创 Python训练营打卡Day36(2025.5.25)

【代码】Python训练营打卡Day36(2025.5.25)

2025-05-25 20:07:26 191

原创 Python训练营打卡Day35(2025.5.24)

三种不同的模型可视化方法:推荐torchinfo打印summary+权重分布可视化。进度条功能:手动和自动写法,让打印结果更加美观。推理的写法:评估模式。

2025-05-24 14:37:53 165

原创 Python训练营打卡Day34(2025.5.23)

类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)GPU训练的方法:数据和模型移动到GPU device上。CPU性能的查看:看架构代际、核心数、线程数。GPU性能的查看:看显存、看级别、看架构代际。

2025-05-24 14:30:41 234

原创 Python训练营打卡Day33(2025.5.22)

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。2. 回归任务中,标签需转为float类型(如torch.float32)。查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。

2025-05-22 12:42:59 172

原创 Python训练营打卡Day32(2025.5.21)

官方文档的阅读和使用:要求安装的包和文档为同一个版本。官方文档的检索方式:github和官网。绘图的理解:对底层库的调用。普通方法所需要的参数。

2025-05-22 12:37:20 155

原创 Python训练营打卡Day31(2025.5.20)

【代码】Python训练营打卡Day31(2025.5.20)

2025-05-22 12:33:21 173

原创 Python训练营打卡Day30(2025.5.19)

导入库/模块的核心逻辑:找到根目录(python解释器的目录和终端的目录不一致)导入自定义库/模块的方式。导入官方库的三种手段。

2025-05-19 23:01:35 206

原创 Python训练营打卡Day29(2025.5.18)

装饰器思想的进一步理解:外部修改、动态。类方法的定义:内部定义和外部定义。

2025-05-18 23:27:39 198

原创 Python训练营打卡Day28(2025.5.17)

类的继承:属性的继承、方法的继承。

2025-05-17 18:57:32 233

原创 Python训练营打卡Day27(2025.5.16)

装饰器的思想:进一步复用。注意内部函数的返回值。

2025-05-16 20:14:26 158

原创 Python训练营打卡Day26(2025.5.15)

在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。try-except-else-finally机制。debug过程中的各类报错。try-except机制。

2025-05-15 23:56:39 131

原创 Python训练营打卡Day25(2025.5.14)

在即将进入深度学习专题学习前,我们最后差缺补漏,把一些常见且重要的知识点给他们补上,加深对代码和流程的理解。try-except-else-finally机制。debug过程中的各类报错。try-except机制。

2025-05-14 23:22:36 126

原创 Python训练营打卡Day24(2025.5.13)

【代码】Python训练营打卡Day24(2025.5.13)

2025-05-13 22:27:30 111

原创 Python训练营打卡Day23(2025.5.12)

ColumnTransformer和Pipeline类。

2025-05-12 23:41:37 185

原创 Python训练营打卡Day22(2025.5.11)

自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码。仔细回顾一下之前21天的内容,没跟上进度的同学补一下进度。

2025-05-11 23:07:24 180

原创 Python训练营打卡Day21(2025.5.10)

【代码】Python训练营打卡Day21(2025.5.10)

2025-05-10 23:56:09 150

原创 Python训练营打卡Day20(2025.5.9)

推荐系统:在协同过滤算法中,用户-物品评分矩阵通常是稀疏且高维的。SVD (或其变种如 FunkSVD, SVD++) 可以用来分解这个矩阵,发现潜在因子 (latent factors),从而预测未评分的项。这里其实属于特征降维的部分。数据重构:比如重构信号、重构图像(可以实现有损压缩,k 越小压缩率越高,但图像质量损失越大)降噪:通常噪声对应较小的奇异值。通过丢弃这些小奇异值并重构矩阵,可以达到一定程度的降噪效果。特征降维:对高维数据减小计算量、可视化。奇异值推导(可不掌握)

2025-05-09 18:59:28 215

原创 Python训练营打卡Day19(2025.5.8)

常见的特征筛选算法方差筛选皮尔逊相关系数筛选lasso筛选树模型重要性shap重要性递归特征消除REF。

2025-05-08 22:06:34 199

原创 Python训练营打卡Day18(2025.5.7)

推断簇含义的2个思路:先选特征和后选特征。科研逻辑闭环:通过精度判断特征工程价值。通过可视化图形借助ai定义簇的含义。聚类后的分析:推断簇的类型。

2025-05-07 22:13:40 264

原创 Python训练营打卡Day17(2025.5.6)

知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参( )将聚类后的特征添加到原数据中原则t-sne或者pca进行2D或3D可视化。

2025-05-06 17:46:21 174

原创 Python训练营打卡Day16(2025.5.5)

因为前天说了shap,这里涉及到数据形状尺寸问题,所以需要在这一节说清楚,后续的神经网络我们将要和他天天打交道。numpy数组的创建:简单创建、随机创建、遍历、运算。numpy数组的索引:一维、二维、三维。SHAP值的深入理解。

2025-05-05 23:45:39 253

原创 Python训练营打卡Day15(2025.5.4)

【代码】Python训练营打卡Day15(2025.5.4)

2025-05-04 23:20:36 205

原创 Python训练营打卡Day14(2025.5.3)

【代码】Python训练营打卡Day14(2025.5.3)

2025-05-03 22:34:50 238

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除