说明
- 计数排序是一种非比较排序,基本思想是按照元素出现的次数来确定最终的排序位置
代码
def counting_sort(arr):
if not arr:
return arr # 处理空数组的情况
min_element = min(arr) # 查找最小元素
max_element = max(arr) # 查找最大元素
element_quantity = max_element - min_element + 1 # 计算元素跨度
count = [0] * element_quantity # 生成统计列表
# 元素计数
for i in arr:
count[i-min_element] += 1
# 次数累加
for i in range(1,element_quantity):
count[i] += count[i-1]
# 逆序遍历实现元素的重新排列
temporary = [0]*len(arr) # 注意重复元素,不可用element_quantity设置列表大小
for i in reversed(arr):
# 计数时元素个数从1开始增加,减一的操作符合列表下标的规范,避免范围超出
temporary[count[i-min_element]-1] = i
count[i-min_element] -= 1 # 实现重复数值排序的关键
return temporary
输入
- [5,3,4,1,1,2]
运行结果
- [1, 1, 2, 3, 4, 5]
代码说明
-
逆序遍历原数组:
-
提高代码稳定性,保证数组的相对位置不变
-
-
稳定性意义:
-
举个例子说明稳定性的重要性
假设我们有一个包含学生信息的列表,每个学生有一个分数和一个名字。我们先按分数进行计数排序,然后再按名字进行排序。
students = [ {"name": "Alice", "score": 90}, {"name": "Bob", "score": 85}, {"name": "Charlie", "score": 85}, {"name": "David", "score": 92}, {"name": "Eva", "score": 90}, ]
现在,我们希望先按分数对学生进行排序。如果在排序过程中不保证稳定性,结果可能会出现以下问题:
不稳定排序(从前往后遍历可能导致)
如果我们从前往后遍历,排序算法可能打乱相同分数的学生的相对顺序。例如:
[ {"name": "Bob", "score": 85}, {"name": "Charlie", "score": 85}, {"name": "Eva", "score": 90}, {"name": "Alice", "score": 90}, {"name": "David", "score": 92}, ]
在这个结果中,
Alice
和Eva
以及Bob
和Charlie
的顺序可能会改变,因为它们具有相同的分数,但在原数组中它们的相对顺序不同。稳定排序(从后向前遍历保持稳定性)
如果我们从后向前遍历,并确保排序的稳定性,排序后的学生列表会保留相同分数的学生的相对顺序:
[ {"name": "Bob", "score": 85}, {"name": "Charlie", "score": 85}, {"name": "Alice", "score": 90}, {"name": "Eva", "score": 90}, {"name": "David", "score": 92}, ]
在这个稳定的排序结果中,分数相同的学生顺序保持不变。
什么时候稳定性很重要
- 多级排序:如果你首先按一个标准(如分数)排序,然后按另一个标准(如名字)进行排序,稳定性非常关键。它能确保在第二级排序中,相同分数的学生仍然保持按名字的顺序。
- 数据结构排序:如果你排序的数据是复杂对象(如学生、员工等),稳定性可以确保在多个标准排序时,后续排序不会打乱前面的排序结果。
-
-
-
总结
虽然破坏相同元素的相对顺序不会影响按数值进行的最终排序结果,但在涉及多级排序或复杂对象排序时,排序的稳定性是至关重要的。通过从后向前遍历,计数排序能够确保相同值的元素保持其在原数组中的顺序,这对于某些应用场景非常重要。
-