三、茴香豆:搭建你的 RAG 智能助理

(1)RAG 基础知识介绍

茴香豆是一款新的应用,由于没有使用相关的资料去训练模型,原始的InternLM2-Chat-7B模型便无法回答相关问题、胡编乱造

传统上:

  • 采集新增语料
  • 微调再训练

传统解决方法的缺点:

  • 知识更新太快
  • 语料知识库太大
  • 训练成本高
  • 语料难以收集

RAG技术概述:

RAG很好地解决了上述问题,无需额外训练。其最大的特点解决大模型处理知识密集任务时的各种挑战

RAG工作原理:

  • 从外部知识源检索相关信息,并将这些信息用于指导语言模型生成更准确、更丰富的回答
  • RAG相当于搜索引擎用户输入的内容相当于索引大模型生成的内容作为回答

向量数据库:

通过余弦相似度或点乘来判断向量之间的相似度,然后根据相似度的排分进行结果的排序,把最相关的内容用于后续回答的生成。

在面向大规模的数据以及需要高速响应的需求时,向量数据库也是需要优化的,其中非常重要的是对向量表示的优化,例如使用更高级的文本编码技术、更好的预训练模型,也包括尝试不同的句子、段落嵌入

RAG流程示例:

Indexing(索引)    Retrieval(检索)   embeddings(嵌入)    Chunks Vectors(向量数据库)

RAG无需训练,只需更新向量数据库即可

RAG发展进程:

Native RAG:索引、检索、生成三个基础部分

Advanced RAG:在三个基础部分(索引、检索、生成)之外,对检索前后都进行增强,在检索之前对用户的问题进行路由扩展、重写等,对检索到的信息进行重排序、总结融合等处理,使信息处理和收集能力更高

Modular RAG:将RAG的基础部分和后续各种优化技术及功能模块化,可以根据实际业务需求定制,完成如图中更高级的应用

RAG常见优化方法:

嵌入优化、索引优化:这两种方法通过提高向量数据库的质量,来对RAG进行性能的提升

上下文管理:通过如图中的方法减少检索的冗余信息,并提高大模型的处理效率。如可以使用小一点的语言模型,来检测和移除不重要的标记,或者训练信息提取器和压缩器

查询优化、上下文管理:advice中RAG前检索后检索部分

迭代检索:为大模型生成提供全面的知识基础

递归检索:通过迭代细化搜索查询来改进搜索结果的深度和相关性,使用链式推理指导检索过程并根据检索结果细化推理过程

自适应检索:让大模型能够自主的决定其所要检索的内容

迭代检索、递归检索、自适应检索retrieval检索部分是优化中的重中之重

LLM微调:优化RAG一种常见的思路,可根据场景和数据特征,对大模型进行定向微调;对模型生成和参与进行针对性微调

RAG VS 微调(Fine-tuning):

提示工程(不建议)

RAG总结:

(2)茴香豆介绍

核心特性:

构建:

工作流:

应答模块采用多来源检索、混合检索、安全评估来保证输出内容的准确性

其综合多来源检索到的信息,通过评分来控制内容筛选,方便控制输出内容的严谨性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值