欧拉函数证明

#算法/数学
#PermanentNotes/algorithm

推荐视频
G09 筛法求欧拉函数_哔哩哔哩_bilibili
![[Pasted image 20250325102404.png]]

欧拉函数的性质
若p是质数,则
φ ( x ) = x − 1 \varphi(x)=x-1 φ(x)=x1

若p是质数,则
φ ( p k ) = ( p − 1 ) p k − 1 \varphi(p^{k})=(p-1)p^{k-1} φ(pk)=(p1)pk1

证明

显然,若p是质数,则[1,p)内都与p互质
1 p 2p 3p 4p . . . . p k p^k pk
将公约数np去掉之后,我们发现
每两个相邻的p之间都有p-1个数与p互质, p k p^k pk p k p \frac{p^k}{p} ppk个循环节
所以我们可以得出 p k p^k pk p k − 1 p^{k-1} pk1个质数

积性函数:若 g c d ( m , n ) = 1 gcd(m,n)=1 gcd(m,n)=1,则
φ ( m n ) = φ ( m ) φ ( n ) \varphi(mn)=\varphi(m)\varphi(n) φ(mn)=φ(m)φ(n)

欧拉函数(Euler’s totient function) 公式、积性 证明 - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值