#算法/数学
#PermanentNotes/algorithm
推荐视频
G09 筛法求欧拉函数_哔哩哔哩_bilibili
欧拉函数的性质
若p是质数,则
φ
(
x
)
=
x
−
1
\varphi(x)=x-1
φ(x)=x−1
若p是质数,则
φ
(
p
k
)
=
(
p
−
1
)
p
k
−
1
\varphi(p^{k})=(p-1)p^{k-1}
φ(pk)=(p−1)pk−1
证明
显然,若p是质数,则[1,p)内都与p互质
1 p 2p 3p 4p . . . .
p
k
p^k
pk
将公约数np去掉之后,我们发现
每两个相邻的p之间都有p-1个数与p互质,
p
k
p^k
pk有
p
k
p
\frac{p^k}{p}
ppk个循环节
所以我们可以得出
p
k
p^k
pk有
p
k
−
1
p^{k-1}
pk−1个质数
积性函数:若
g
c
d
(
m
,
n
)
=
1
gcd(m,n)=1
gcd(m,n)=1,则
φ
(
m
n
)
=
φ
(
m
)
φ
(
n
)
\varphi(mn)=\varphi(m)\varphi(n)
φ(mn)=φ(m)φ(n)