【打卡】003 p3 Pytorch实现天气识别

打卡~

555 我的环境:

● 语言环境:Python 
● 编译器:jupyter notebook
● 深度学习环境:Pytorch

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

# 一、 前期准备
# 1.1 设置环境

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib,random

device = torch.device("cpu")

device
device(type='cpu')

# 1.2 导入数据

from pathlib import Path

data_dir = Path('/Users/corawoo/Desktop/weather_photos')
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split('/')[-1] for path in data_paths]
print(classeNames)

# ● 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
# ● 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。 
# ● 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames中
# ● 第四步:打印classeNames列表,显示每个文件所属的类别名称。 
['cloudy', 'rain', 'shine', 'sunrise']
import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = '/Users/corawoo/Desktop/weather_photos/cloudy/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

total_datadir = '/Users/corawoo/Desktop/weather_photos'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: /Users/corawoo/Desktop/weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

# 1.3 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

# ● train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
# ● test_size表示测试集大小,是总体数据长度减去训练集大小。
(<torch.utils.data.dataset.Subset at 0x17b9633d0>,
 <torch.utils.data.dataset.Subset at 0x17b7cc4f0>)
# 使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。

train_size,test_size
(900, 225)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
                                      num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

# 二、简易cnn模型

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model
Using cpu device
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

# 三、训练模型
# 3.1 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

# 3.2 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

# 3.3 编写测试函数

# 测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

# 3.4 正式训练

epochs     = 30
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:59.7%, Train_loss:0.989, Test_acc:65.8%,Test_loss:0.942
Epoch: 2, Train_acc:79.8%, Train_loss:0.650, Test_acc:77.8%,Test_loss:0.681
Epoch: 3, Train_acc:84.0%, Train_loss:0.521, Test_acc:81.3%,Test_loss:0.466
Epoch: 4, Train_acc:86.1%, Train_loss:0.463, Test_acc:89.8%,Test_loss:0.391
Epoch: 5, Train_acc:88.4%, Train_loss:0.402, Test_acc:87.1%,Test_loss:0.350
Epoch: 6, Train_acc:88.6%, Train_loss:0.365, Test_acc:91.6%,Test_loss:0.316
Epoch: 7, Train_acc:89.9%, Train_loss:0.344, Test_acc:92.0%,Test_loss:0.350
Epoch: 8, Train_acc:89.6%, Train_loss:0.333, Test_acc:92.9%,Test_loss:0.284
Epoch: 9, Train_acc:91.8%, Train_loss:0.339, Test_acc:87.6%,Test_loss:0.302
Epoch:10, Train_acc:93.3%, Train_loss:0.287, Test_acc:90.7%,Test_loss:0.288
Epoch:11, Train_acc:93.6%, Train_loss:0.269, Test_acc:92.9%,Test_loss:0.249
Epoch:12, Train_acc:92.8%, Train_loss:0.271, Test_acc:92.9%,Test_loss:0.233
Epoch:13, Train_acc:93.6%, Train_loss:0.236, Test_acc:94.2%,Test_loss:0.225
Epoch:14, Train_acc:93.6%, Train_loss:0.266, Test_acc:92.0%,Test_loss:0.238
Epoch:15, Train_acc:93.9%, Train_loss:0.238, Test_acc:92.9%,Test_loss:0.228
Epoch:16, Train_acc:94.1%, Train_loss:0.214, Test_acc:94.2%,Test_loss:0.227
Epoch:17, Train_acc:94.8%, Train_loss:0.222, Test_acc:92.4%,Test_loss:0.244
Epoch:18, Train_acc:94.6%, Train_loss:0.225, Test_acc:95.1%,Test_loss:0.443
Epoch:19, Train_acc:94.8%, Train_loss:0.193, Test_acc:93.8%,Test_loss:0.199
Epoch:20, Train_acc:95.4%, Train_loss:0.208, Test_acc:93.3%,Test_loss:0.255
Epoch:21, Train_acc:95.9%, Train_loss:0.178, Test_acc:92.9%,Test_loss:0.243
Epoch:22, Train_acc:95.8%, Train_loss:0.175, Test_acc:94.2%,Test_loss:0.210
Epoch:23, Train_acc:96.2%, Train_loss:0.176, Test_acc:93.8%,Test_loss:0.191
Epoch:24, Train_acc:96.2%, Train_loss:0.172, Test_acc:94.2%,Test_loss:0.205
Epoch:25, Train_acc:95.8%, Train_loss:0.221, Test_acc:92.9%,Test_loss:0.230
Epoch:26, Train_acc:95.6%, Train_loss:0.163, Test_acc:93.3%,Test_loss:0.206
Epoch:27, Train_acc:97.0%, Train_loss:0.152, Test_acc:93.3%,Test_loss:0.202
Epoch:28, Train_acc:96.6%, Train_loss:0.151, Test_acc:94.2%,Test_loss:0.191
Epoch:29, Train_acc:97.4%, Train_loss:0.150, Test_acc:92.9%,Test_loss:0.344
Epoch:30, Train_acc:96.6%, Train_loss:0.141, Test_acc:95.1%,Test_loss:0.192
Done
plt.rcParams['font.sans-serif'] = ['SimHei', 'path/to/SimHei.ttf']

# 四、结果可视化
# 4.1 Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

# 4.2 指定图片进行预测

from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='/Users/corawoo/Desktop/weather_photos/shine/shine252.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
预测结果是:sunrise

# 五、保存并加载模型

# 模型保存
PATH = '/Users/corawoo/Desktop/weather_photos/model_weather'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值