牛客网刷题:数字变换的最小步数

牛客网刷题:数字变换的最小步数

在这里插入图片描述

题目链接

牛客网NC230903

题目描述

给定两个正整数x和y,需要通过特定的四种运算(上取整、下取整、阶乘、算术平方根)将x变换为y,求最小步数。

每次阶乘计为一步,每次开根号并向上/向下取整计为一步。

如果7步内无法完成变换,则输出-1。

示例

输入:
3
1 7
4 6
3 7

输出:
-1
4
-1

题目分析

问题本质

这是一个典型的搜索问题,我们需要从初始值x出发,通过有限次操作,到达目标值y。由于操作次数有限(最多7步),且数据范围很小(1-7),因此可以使用**深度优先搜索(DFS)**来解决。

关键思路

  1. 从初始值x开始,尝试所有可能的操作
  2. 对每个操作后的结果,继续递归尝试,直到找到目标值y或达到步数上限
  3. 由于阶乘增长极快,我们可以设置一个上限,阶乘操作只在数值较小时尝试

核心算法

主要通过DFS遍历所有可能的变换路径,记录最小步数:

void dfs(ll ori, ll ct, ll fi) {
    // 找到目标值,更新最小步数
    if(ori == fi) {
        cnt = min(cnt, ct);
        return;
    }
    
    // 超过7步,剪枝返回
    if(ct > 7) return;
    
    // 只对较小的数尝试阶乘
    if(ori <= 15) dfs(jc(ori), ct+1, fi);
    
    // 尝试开方并上取整
    dfs(ceil(sqrt((double)ori)), ct+1, fi);
    
    // 尝试开方并下取整
    dfs(floor(sqrt((double)ori)), ct+1, fi);
    
    return;
}

完整代码详解

#include<bits/stdc++.h>
#define ll long long
using namespace std;

// 记录找到的最小步数,初始设置为一个较大值10
ll cnt = 10;

// 阶乘函数实现
ll jc(ll n) {
    if(n == 0 || n == 1) return 1;
    else return n * jc(n-1);
}

// DFS搜索函数
// ori: 当前值
// ct: 已执行的步数
// fi: 目标值
void dfs(ll ori, ll ct, ll fi) {
    // 找到目标值,更新最小步数
    if(ori == fi) {
        cnt = min(cnt, ct);
        return;
    }
    
    // 剪枝:如果步数超过7,直接返回
    if(ct > 7) return;
    
    // 尝试三种操作:
    // 1. 对较小的数尝试阶乘(避免溢出)
    if(ori <= 15) dfs(jc(ori), ct+1, fi);
    
    // 2. 开根号并上取整
    dfs(ceil(sqrt((double)ori)), ct+1, fi);
    
    // 3. 开根号并下取整
    dfs(floor(sqrt((double)ori)), ct+1, fi);
    
    return;
}

int main() {
    int t;
    cin >> t;
    
    while(t--) {
        // 重置最小步数计数器
        cnt = 10;
        
        ll x, y;
        cin >> x >> y;
        
        // 从x开始DFS搜索到y的路径
        dfs(x, 0, y);
        
        // 如果最小步数大于7,输出-1,否则输出最小步数
        cout << (cnt > 7 ? -1 : cnt) << endl;
    }
    
    return 0;
}

关键点解析

1. 为什么要限制阶乘只在较小的数值使用?

阶乘增长非常快,即使是较小的数如15,其阶乘已经超过了10^12。更大的数计算阶乘容易导致整数溢出,且在本题的数据范围内不会有意义。

2. 关于搜索优化

本题的搜索空间其实很小(数据范围1-7,最多7步),所以不需要太多优化。但仍然采用了如下策略:

  • 步数超过7立即剪枝
  • 阶乘操作限制在较小的数上
  • 一旦找到目标值,更新最小步数

3. 浮点数转换的必要性

注意到代码中对开平方操作使用了(double)转换:

dfs(ceil(sqrt((double)ori)), ct+1, fi);
dfs(floor(sqrt((double)ori)), ct+1, fi);

这是因为C++中的sqrt函数要求浮点数参数,而我们使用的是长整型。

时间复杂度分析

对于每个测试用例,DFS最多尝试7步,每步有3种可能的操作,理论上最坏情况复杂度为O(3^7)。但由于阶乘的快速增长特性,实际搜索树的分支会远少于这个理论上限,实际运行效率较高。

总结

这道题目是一个典型的搜索问题,通过DFS可以很好地解决。关键在于理解题目要求的四种操作,以及适当的剪枝优化。对于类似的数值变换问题,深搜往往是一个简单有效的解决方案,特别是当数据范围和步数限制都较小时。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值