牛客网刷题:数字变换的最小步数
题目链接
题目描述
给定两个正整数x和y,需要通过特定的四种运算(上取整、下取整、阶乘、算术平方根)将x变换为y,求最小步数。
每次阶乘计为一步,每次开根号并向上/向下取整计为一步。
如果7步内无法完成变换,则输出-1。
示例
输入:
3
1 7
4 6
3 7
输出:
-1
4
-1
题目分析
问题本质
这是一个典型的搜索问题,我们需要从初始值x出发,通过有限次操作,到达目标值y。由于操作次数有限(最多7步),且数据范围很小(1-7),因此可以使用**深度优先搜索(DFS)**来解决。
关键思路
- 从初始值x开始,尝试所有可能的操作
- 对每个操作后的结果,继续递归尝试,直到找到目标值y或达到步数上限
- 由于阶乘增长极快,我们可以设置一个上限,阶乘操作只在数值较小时尝试
核心算法
主要通过DFS遍历所有可能的变换路径,记录最小步数:
void dfs(ll ori, ll ct, ll fi) {
// 找到目标值,更新最小步数
if(ori == fi) {
cnt = min(cnt, ct);
return;
}
// 超过7步,剪枝返回
if(ct > 7) return;
// 只对较小的数尝试阶乘
if(ori <= 15) dfs(jc(ori), ct+1, fi);
// 尝试开方并上取整
dfs(ceil(sqrt((double)ori)), ct+1, fi);
// 尝试开方并下取整
dfs(floor(sqrt((double)ori)), ct+1, fi);
return;
}
完整代码详解
#include<bits/stdc++.h>
#define ll long long
using namespace std;
// 记录找到的最小步数,初始设置为一个较大值10
ll cnt = 10;
// 阶乘函数实现
ll jc(ll n) {
if(n == 0 || n == 1) return 1;
else return n * jc(n-1);
}
// DFS搜索函数
// ori: 当前值
// ct: 已执行的步数
// fi: 目标值
void dfs(ll ori, ll ct, ll fi) {
// 找到目标值,更新最小步数
if(ori == fi) {
cnt = min(cnt, ct);
return;
}
// 剪枝:如果步数超过7,直接返回
if(ct > 7) return;
// 尝试三种操作:
// 1. 对较小的数尝试阶乘(避免溢出)
if(ori <= 15) dfs(jc(ori), ct+1, fi);
// 2. 开根号并上取整
dfs(ceil(sqrt((double)ori)), ct+1, fi);
// 3. 开根号并下取整
dfs(floor(sqrt((double)ori)), ct+1, fi);
return;
}
int main() {
int t;
cin >> t;
while(t--) {
// 重置最小步数计数器
cnt = 10;
ll x, y;
cin >> x >> y;
// 从x开始DFS搜索到y的路径
dfs(x, 0, y);
// 如果最小步数大于7,输出-1,否则输出最小步数
cout << (cnt > 7 ? -1 : cnt) << endl;
}
return 0;
}
关键点解析
1. 为什么要限制阶乘只在较小的数值使用?
阶乘增长非常快,即使是较小的数如15,其阶乘已经超过了10^12。更大的数计算阶乘容易导致整数溢出,且在本题的数据范围内不会有意义。
2. 关于搜索优化
本题的搜索空间其实很小(数据范围1-7,最多7步),所以不需要太多优化。但仍然采用了如下策略:
- 步数超过7立即剪枝
- 阶乘操作限制在较小的数上
- 一旦找到目标值,更新最小步数
3. 浮点数转换的必要性
注意到代码中对开平方操作使用了(double)
转换:
dfs(ceil(sqrt((double)ori)), ct+1, fi);
dfs(floor(sqrt((double)ori)), ct+1, fi);
这是因为C++中的sqrt
函数要求浮点数参数,而我们使用的是长整型。
时间复杂度分析
对于每个测试用例,DFS最多尝试7步,每步有3种可能的操作,理论上最坏情况复杂度为O(3^7)。但由于阶乘的快速增长特性,实际搜索树的分支会远少于这个理论上限,实际运行效率较高。
总结
这道题目是一个典型的搜索问题,通过DFS可以很好地解决。关键在于理解题目要求的四种操作,以及适当的剪枝优化。对于类似的数值变换问题,深搜往往是一个简单有效的解决方案,特别是当数据范围和步数限制都较小时。