质因数(素因数或质因子)
在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。
每个合数都可以写成几个质数(也可称为素数)相乘的形式,这几个质数就都叫做这个合数的质因数。
质因数具有以下性质:
- 两个没有共同质因子的正整数称为互质。
- 1没有质因子,因此1与任何正整数(包括1本身)都是互质。
例如:6的质因数是2和3,因为6=2*3;8的质因数是2,8=2*2*2。
题目:
输入样例:
20
200
2000
输出样例:
代码如下
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<math.h>
int is_sushu(int n)
{
if (n == 1)//首先判断1和2
return 0;
if (n == 2)
return n;
for (int i = 2; i <= sqrt(n); i++)//这里使用sqrt优化代码减少循环次数
{
if (n % i == 0)
return 0;
}
return n;
}
int main()
{
long long n;//考虑范围我们用long long
scanf("%lld", &n);
if (is_sushu(n))//先判断n是否是素数,是直接打印
{
printf("%lld", n);
}
else
{
int ret = n;//定义一个变量,防止后面使用,n被改变
printf("%lld=", n);
for(int i = 2; i < ret; i++)
{
if (is_sushu(i))//确保数是质数
{
while (ret % i == 0)//还要保证数能被n整除
{
printf("%lld*", i);
ret /= i;
if (is_sushu(ret))//这是要保证最后一个数是质数
{
printf("%lld", ret);
break;
}
}
}
}
}
return 0;
}