P1776宝物筛选

宝物筛选

题目描述

终于,破解了千年的难题。小 FF 找到了王室的宝物室,里面堆满了无数价值连城的宝物。

这下小 FF 可发财了,嘎嘎。但是这里的宝物实在是太多了,小 FF 的采集车似乎装不下那么多宝物。看来小 FF 只能含泪舍弃其中的一部分宝物了。

小 FF 对洞穴里的宝物进行了整理,他发现每样宝物都有一件或者多件。他粗略估算了下每样宝物的价值,之后开始了宝物筛选工作:小 FF 有一个最大载重为 WWW 的采集车,洞穴里总共有 nnn 种宝物,每种宝物的价值为 viv_ivi,重量为 wiw_iwi,每种宝物有 mim_imi 件。小 FF 希望在采集车不超载的前提下,选择一些宝物装进采集车,使得它们的价值和最大。

输入格式

第一行为一个整数 nnnWWW,分别表示宝物种数和采集车的最大载重。

接下来 nnn 行每行三个整数 vi,wi,miv_i,w_i,m_ivi,wi,mi

输出格式

输出仅一个整数,表示在采集车不超载的情况下收集的宝物的最大价值。

样例 #1

样例输入 #1

4 20
3 9 3
5 9 1
9 4 2
8 1 3

样例输出 #1

47

提示

对于 30%30\%30% 的数据,n≤∑mi≤104n\leq \sum m_i\leq 10^4nmi1040≤W≤1030\le W\leq 10^30W103

对于 100%100\%100% 的数据,n≤∑mi≤105n\leq \sum m_i \leq 10^5nmi1050≤W≤4×1040\le W\leq 4\times 10^40W4×1041≤n≤1001\leq n\le 1001n100

题解

第一眼

背包模版,秒了。

恭喜恭喜, 60pts60pts60pts

好好好,不水行了吧

二进制优化

我们可以将一个数kkk拆分为几个类似于2n2^n2n的数相加,如19=24+319 = 2^4 + 319=24+3。那么,我们就可以用枚举出来的二进制方案取0∼mi0 \sim m_i0mi, 复杂度仅为O(NW∑log⁡mi)O(NW \sum \log m_i)O(NWlogmi),并不会超时
二进制优化CodeCodeCode

	for(int i = 1; i <= c/*c为物品数量*/; i *= 2) {
		c -= i;
		item tmp;//item为结构体
		tmp.v = a * i;//v是价值,a是单个物品的价值
		tmp.w = b * i;//同理
		items.push_back(tmp);//items为结构体类型vector
	}
	if (c) {//若还有剩余
		item tmp;
		tmp.v = a * c;//注意不是i
		tmp.w = b * c;
		items.push_back(tmp);
	}

接下来就是美妙的模板了

总代码

#include <iostream>
#include <vector>
using namespace std;
struct item {
    int v, w;//数量不需要
};
vector<item> items;
int n ,w;
int dp[40010];
int main() {
    int n, m;
    cin >> n >> m;
    int a, b, c;
    for (int i = 1; i <= n; i++) {
        cin >> a >> b >> c;
        for (int j = 1; j <= c; j *= 2) {
            c -= j;
            item tmp;
            tmp.v = a * j;
            tmp.w = b * j;
            items.push_back(tmp);
        }
        if (c) {
            item tmp;
            tmp.v = a * c;
            tmp.w = b * c;
            items.push_back(tmp);
        }
    }

    for (int i = 0; i < items.size(); i++) {
        for (int j = m; j >= items[i].w; j--) {//注意终止点
            if (j >= items[i].w) dp[j] = max(dp[j], dp[j - items[i].w] + items[i].v);
        }
    }
    cout << dp[m] << endl;
    return 0;
}

暴力环节

为了呼吁暴力出奇迹(明明就是不会), 善良的我所以贴心的附上了暴力方法

#include <iostream>  
#include <vector>  
#include <algorithm>  
using namespace std;  
  
int main() {  
    int n, W; 
    cin >> n >> W;  
      
    vector<int> v(n), w(n), m(n);
    for (int i = 0; i < n; ++i) {  
        cin >> v[i] >> w[i] >> m[i];  
    }  

    vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));  
      
    // 暴力dp  
    for (int i = 1; i <= n; ++i) {  
        for (int j = 0; j <= W; ++j) {  
            // 不选择第i种宝物时的最大价值  
            dp[i][j] = dp[i - 1][j];  
            for (int k = 1; k <= m[i - 1] && k * w[i - 1] <= j; ++k) {  
                dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i - 1]] + k * v[i - 1]);  
            }  
        }  
    }  
      
    // 输出结果  
    cout << dp[n][W] << endl;        
    return 0;  
}

复杂度O(NV⋅∏mi)O(NV \cdot \prod m_i)O(NVmi)
∏\prod表示连乘

先别走

这里在提供一种(60+40)pts(60 + 40)pts(60+40)pts代码
为什么是(60+40)(60 + 40)(60+40)呢, 606060指暴力dp的60pts60pts60pts
40pts40pts40pts指下载下来的样例
利用样例下载法,我们可以轻易得到100pts100pts100pts
CodeCodeCode

//到时候补齐因为我下载限额到了...

SorrySorrySorry

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值