.
💓 博客主页:倔强的石头的CSDN主页
📝Gitee主页:倔强的石头的gitee主页
⏩ 文章专栏:《C++指南》
期待您的关注
![]()
文章目录
一、问题描述
在实际编程中,我们经常会遇到需要处理大整数的情况。由于编程语言中内置整数类型(如 int
、long
等)有其表示范围的限制,当需要处理的整数超出这些范围时,就不能直接使用内置类型进行计算。
一般的解决方式是以两个以字符串形式表示的非负整数 num1
和 num2
的乘法,并将结果也以字符串形式返回。
输入限制
1 <= num1.length, num2.length <= 200
num1
和num2
只能由数字组成。num1
和num2
都不包含任何前导零,除了数字0
本身。
二、解题思路
要解决这个问题,我们可以模拟手工乘法的过程。在手工乘法中,我们将一个数的每一位与另一个数的每一位相乘,然后将结果相加,并处理进位。具体步骤如下:
- 特殊情况处理:如果
num1
或num2
为"0"
,则直接返回"0"
。 - 反转字符串:为了方便从低位到高位进行计算,我们将
num1
和num2
反转。 - 初始化结果数组:创建一个长度为
num1.size() + num2.size()
的数组ret
,用于存储中间结果。因为两个数相乘的结果位数不会超过这两个数的位数之和。 - 逐位相乘:使用两层循环,将
num1
的每一位与num2
的每一位相乘,并将结果累加到ret
数组的相应位置。 - 处理进位:遍历
ret
数组,将每一位的进位加到下一位。 - 去除前导零:由于结果数组可能存在前导零,我们需要将其去除。
- 转换为字符串:将处理好的结果数组转换为字符串。
三、代码实现
#include <string>
#include <algorithm>
class Solution {
public:
string multiply(string num1, string num2)
{
// 先判断是否有一个为0
if(num1 == "0" || num2 == "0")
return "0";
// 反转两个字符串方便操作
reverse(num1.begin(), num1.end());
reverse(num2.begin(), num2.end());
// 结果位数不超过两个字符串之和
int size = num1.size() + num2.size();
// 创建存储结果的数组并初始化为0
int* ret = new int[size]();
// 字符串相乘,不考虑进位
for(int i = 0; i < num1.size(); ++i)
{
for(int j = 0; j < num2.size(); ++j)
{
ret[i + j] += (num1[i] - '0') * (num2[j] - '0');
}
}
// 处理进位
for(int i = 0; i < size - 1; ++i)
{
ret[i + 1] += ret[i] / 10;
ret[i] = ret[i] % 10;
}
// 去除前导零
int i = size - 1;
while( (ret[i] == 0) && (size > 1) )
{
--size;
--i;
}
// 转字符串
string s = "";
s.reserve(size);
for(int i = size - 1; i >= 0; --i)
{
s += ('0' + ret[i]);
}
// 释放动态分配的内存
delete[] ret;
return s;
}
};
四、代码详细分析
1. 特殊情况处理
if(num1 == "0" || num2 == "0")
return "0";
如果 num1
或 num2
为 "0"
,则它们的乘积一定为 "0"
,直接返回即可。
2. 反转字符串
reverse(num1.begin(), num1.end());
reverse(num2.begin(), num2.end());
使用 std::reverse
函数将 num1
和 num2
反转,这样在后续计算中可以从低位(字符串的起始位置)开始处理。
3. 初始化结果数组
int size = num1.size() + num2.size();
int* ret = new int[size]();
创建一个长度为 num1.size() + num2.size()
的整数数组 ret
,并使用 ()
进行值初始化,将数组元素都初始化为 0。
4. 逐位相乘
for(int i = 0; i < num1.size(); ++i)
{
for(int j = 0; j < num2.size(); ++j)
{
ret[i + j] += (num1[i] - '0') * (num2[j] - '0');
}
}
使用两层嵌套循环,将 num1
的每一位与 num2
的每一位相乘,并将结果累加到 ret
数组的相应位置。(num1[i] - '0')
和 (num2[j] - '0')
是将字符转换为对应的数字。
5. 处理进位
for(int i = 0; i < size - 1; ++i)
{
ret[i + 1] += ret[i] / 10;
ret[i] = ret[i] % 10;
}
遍历 ret
数组,将每一位的进位(ret[i] / 10
)加到下一位,同时将当前位取模 10 得到该位的最终结果。
6. 去除前导零
int i = size - 1;
while( (ret[i] == 0) && (size > 1) )
{
--size;
--i;
}
从结果数组的最高位开始检查,如果该位为 0 且结果长度大于 1,则将长度减 1,继续检查前一位。
7. 转换为字符串
string s = "";
s.reserve(size);
for(int i = size - 1; i >= 0; --i)
{
s += ('0' + ret[i]);
}
创建一个空字符串 s
,并使用 reserve
方法预先分配足够的空间。然后从结果数组的最高位开始,将每一位转换为字符并添加到字符串 s
中。
8. 释放内存
delete[] ret;
由于 ret
是动态分配的数组,使用完后需要使用 delete[]
释放内存,避免内存泄漏。
五、复杂度分析
- 时间复杂度:
O
(
m
∗
n
)
O(m * n)
O(m∗n),其中
m
m
m 和
n
n
n 分别是
num1
和num2
的长度。主要时间开销在于两层嵌套的循环进行逐位相乘。 - 空间复杂度:
O
(
m
+
n
)
O(m + n)
O(m+n),主要空间开销在于存储中间结果的数组
ret
。
通过以上步骤,我们就可以实现两个大整数的乘法,并将结果以字符串形式返回。这种方法模拟了手工乘法的过程,避免了使用内置的大整数库和直接将输入转换为整数,适用于处理超出内置整数类型表示范围的大整数乘法问题。