FloodFill-----洪水灌溉算法(DFS例题详解)

目录

一.图像渲染:

代码详解:

二.岛屿数量:

代码详解:

三.岛屿的最大面积:

代码详解:

四.被围绕的区域:

代码详解:

五.太平洋大西洋水流问题:

代码详解:


FloodFill算法简介:FloodFill(泛洪填充)算法是一种图像处理的基本算法,用于填充连通区域。该算法通常从一个种子点开始,沿着种子点的相邻像素进行填充,直到遇到边界或者其他指定的条件为止。FloodFill 算法的主要应用是在图像编辑软件中实现填充操作,以及在计算机图形学、计算机视觉等领域中进行区域填充。

下面我们通过一些题目来理解这个算法思想:

一.图像渲染:

有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。

你也被给予三个整数 sr ,  sc 和 newColor 。你应该从像素 image[sr][sc] 开始对图像进行 上色填充 。

为了完成 上色工作 ,从初始像素开始,记录初始坐标的 上下左右四个方向上 像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应 四个方向上 像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为 newColor 。

最后返回 经过上色渲染后的图像 。 ​

  • 对应函数签名如下:

  •  思路:我们从给定的起点开始,进行深度优先搜索(上下左右四个方向)。每次搜索到一个方格时,如果其与初始位置的方格颜色相同,就将该方格的颜色更新,以防止重复搜索;如果不相同,则进行回溯。这里我们设置初始方格为target.

代码详解:

解法一:

class Solution {
    //记录走过的路径,防止走回头路
    boolean[][] used;
    int target;
    public int[][] floodFill(int[][] image, int sr, int sc, int color) {
        int m = image.length,n = image[0].length;
        used = new boolean[m][n];
        target = image[sr][sc];
        dfs(image,sr,sc,color);
        return image;
    }
    public void dfs(int[][] image,int i,int j,int color){
        int m = image.length,n = image[0].length;
        //剪枝,越界直接返回
        if(i < 0 || j < 0 || i >= m || j >= n){
            return ;
        }
        //使用过的位置也直接返回
        if(used[i][j]) return ;
      
        if(image[i][j] == target){
            //上下左右去深搜,符合条件的都标记为color
               image[i][j] = color;
               used[i][j] = true;
             dfs(image,i - 1,j,color);
             dfs(image,i + 1,j,color);
             dfs(image,i,j - 1,color);
             dfs(image,i,j + 1,color);
        }
       
    }
}

解法二:基于解法一,我们可以通过定义两个数组来表示方向:dx[ ],dy[ ],其中dx[ ],dy[ ]的位置要一一对应,具体操作如下:

 代码详解:

class Solution {
    boolean[][] used;
    int target;
    int[] dx = {-1,1,0,0};
    int[] dy = {0,0,1,-1};
    public int[][] floodFill(int[][] image, int sr, int sc, int color) {
        int m = image.length,n = image[0].length;
        used = new boolean[m][n];
        target = image[sr][sc];
        dfs(image,sr,sc,color);
        return image;
    }
    public void dfs(int[][] image,int i,int j,int color){
        int m = image.length,n = image[0].length;
        //每次进入都进行标记,并将该位置值改为color
        used[i][j] = true;
        image[i][j] = color;
        //相当于上下左右四个方向进行深搜
        for(int k = 0;k < 4;k++){
            int x = i + dx[k],y = j + dy[k];
            //所有不符合条件的都不能进入深搜
            if(x >= 0 && x < m && y >= 0 && y < n
            && !used[x][y] && image[x][y] == target){
                dfs(image,x,y,color);
            }
        }
    }
}

运行结果:

二.岛屿数量:

给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。

岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。

此外,你可以假设该网格的四条边均被水包围。

  •  对应函数签名如下:

  • 思路:
  • 遍历整个矩阵,每次找到「⼀块陆地」的时候:
  •  说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯
  • 并且将这个陆地相连的所有陆地,也就是这块「岛屿」,全部「变成海洋」。这样的话,我们下次 遍历到这块岛屿的时候,它「已经是海洋」了,不会影响最终结果。
  •  其中「变成海洋」的操作,可以利⽤「深搜」来解决

代码详解:

 解法一:与上面一样,两种解法(类似):

class Solution {
    int res = 0;
    public int numIslands(char[][] grid) {
        int m = grid.length,n = grid[0].length;
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(grid[i][j] == '1'){
                   //每次找到一个岛屿记录一下,再将这个岛屿淹没
                    res++;
                    dfs(grid,i,j);
                }
            }
        }
        return res;
    }
    public void dfs(char[][] grid,int i,int j){
        int m = grid.length,n = grid[0].length;
        //处理边界情况
        if(i < 0 || j < 0 || i >= m || j >= n){
            return ;
        }
        if(grid[i][j] == '0') return ;
        grid[i][j] = '0'; 
        //上下左右去淹没这个岛屿
        dfs(grid,i - 1,j);
        dfs(grid,i + 1,j);
        dfs(grid,i,j - 1);
        dfs(grid,i,j + 1);
    }
}

解法二:

class Solution {
    int res = 0;
    int[] dx = {0,0,-1,1};
    int[] dy = {1,-1,0,0};
    public int numIslands(char[][] grid) {
        int m = grid.length,n = grid[0].length;
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(grid[i][j] == '1'){
                   //说明找到「⼀个岛屿」,记录到最终结果 res⾥⾯
                    res++;
                    dfs(grid,i,j);//将这个岛屿淹没
                }
            }
        }
        return res;
    }
    public void dfs(char[][] grid,int i,int j){
        int m = grid.length,n = grid[0].length;
       
        grid[i][j] = '0'; 
        for(int k = 0;k < 4;k++){
            int x = i + dx[k],y = j + dy[k];
            if(x >= 0 && x < m && y >= 0 && y < n
            && grid[x][y] != '0'){
                dfs(grid,x,y);
            }
        }
    }
}

运行结果:

 

三.岛屿的最大面积:

  • 题目链接:695. 岛屿的最大面积 - 力扣(LeetCode)
  • 题目描述:

    给你一个大小为 m x n 的二进制矩阵 grid 。

    岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。

    岛屿的面积是岛上值为 1 的单元格的数目。

    计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 

  • 对应函数签名:

算法思路:

• 遍历整个矩阵,每当遇到⼀块⼟地的时候,就⽤「深搜」或者「宽搜」将与这块⼟地相连的「整个 岛屿」的⾯积计算出来

• 然后在搜索得到的「所有的岛屿⾯积」求⼀个「最⼤值」即可

• 在搜索过程中,为了「防⽌搜到重复的⼟地」:

◦ 可以开⼀个同等规模的「布尔数组」,标记⼀下这个位置是否已经被访问过;

◦ 也可以将原始矩阵的 1 修改成 0 ,但是这样操作会修改原始矩阵。 

代码详解:

 解法一:

class Solution {
    int maxArea = 0;
    int count;
    boolean[][] used;
    public int maxAreaOfIsland(int[][] grid) {
        int m = grid.length,n = grid[0].length;
        used = new boolean[m][n];
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(grid[i][j] == 1){
                    //每次找到一个岛屿都要重置计数
                    count = 0;
                    dfs(grid,i,j);
                    maxArea = Math.max(maxArea,count);
                }
            }
        }
        return maxArea;
    }

    public void dfs(int[][] grid,int i,int j){
        int m = grid.length,n = grid[0].length;
        //处理边界情况
        if(i < 0 || j < 0 || i >= m || j >= n){
            return ;
        }
        if(grid[i][j] == 0) return ;
        if(used[i][j]) return ;

        used[i][j] = true;
        count++;
        dfs(grid,i - 1,j);
        dfs(grid,i + 1,j);
        dfs(grid,i,j - 1);
        dfs(grid,i,j + 1);
    }
}

解法二:

class Solution {
    int maxArea = 0;
    int count = 0;
    int[] dx = {0,0,-1,1};
    int[] dy = {1,-1,0,0};
    boolean[][] used;
    public int maxAreaOfIsland(int[][] grid) {
        int m = grid.length,n = grid[0].length;
        used = new boolean[m][n];
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(grid[i][j] == 1){
                    //每次找到一个岛屿都要重置计数
                    count = 0;
                    dfs(grid,i,j);
                    maxArea = Math.max(maxArea,count);
                }
            }
        }
        return maxArea;
    }

    public void dfs(int[][] grid,int i,int j){
        int m = grid.length,n = grid[0].length;

        used[i][j] = true;
        count++;
        for(int k = 0;k < 4;k++){
            int x = i + dx[k],y = j + dy[k];
            //处理不满足条件的情况
            if(x >= 0 && x < m && y >= 0 && y < n 
            && !used[x][y] && grid[x][y] != 0){
                dfs(grid,x,y);
            }
        }

    }
}

运行结果:

四.被围绕的区域:

  • 题目链接:130. 被围绕的区域 - 力扣(LeetCode)
  • 题目描述:给你一个 m x n 的矩阵 board ,由若干字符 'X' 和 'O' ,找到所有被 'X' 围绕的区域,并将这些区域里所有的 'O' 用 'X' 填充。

  • 对应函数签名:

  • 算法思路: 
  • 正难则反。 可以先利⽤ dfs 将与边缘相连的 '0' 区域做上标记,然后重新遍历矩阵,将没有标记过的 '0' 修改成 'X' 即可。

 

代码详解:

class Solution {
    boolean[][] used;
    public void solve(char[][] board) {
        int m = board.length,n = board[0].length;
        used = new boolean[m][n];
        //分别对应上下左右,标记外围的'O'
        for(int i = 0;i < n;i++){
            dfs2(board,0,i);
            dfs2(board,m - 1,i);
        }
        for(int j = 0;j < m;j++){
            dfs2(board,j,0);
            dfs2(board,j,n - 1);
        }

        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(board[i][j] != 'X' && !used[i][j]){
                    dfs(board,i,j);
                }
            }
        }
        
    }
    //将内部的'O'全部标记为'X'
     public void dfs(char[][] board,int i,int j){
        int m = board.length,n = board[0].length;
        if(i < 0 || j < 0 || i >= m || j >= n){
            return ;
        }
        if(board[i][j] == 'X') return;
        if(used[i][j]) return ;


        used[i][j] = true;

        board[i][j] = 'X';

        dfs(board,i - 1,j);
        dfs(board,i + 1,j);
        dfs(board,i,j - 1);
        dfs(board,i,j + 1);
    }
   //将外围的位置标记为true,后续不会对其进行操作
    public void dfs2(char[][] board,int i,int j){
        int m = board.length,n = board[0].length;
        if(i < 0 || j < 0 || i >= m || j >= n){
            return ;
        }
        if(board[i][j] == 'X') return;
        if(used[i][j]) return ;
        used[i][j] = true;
        dfs2(board,i - 1,j);
        dfs2(board,i + 1,j);
        dfs2(board,i,j - 1);
        dfs2(board,i,j + 1);
    }
}

运行结果:

五.太平洋大西洋水流问题:

有一个 m × n 的矩形岛屿,与 太平洋 和 大西洋 相邻。 “太平洋” 处于大陆的左边界和上边界,而 “大西洋” 处于大陆的右边界和下边界。

这个岛被分割成一个由若干方形单元格组成的网格。给定一个 m x n 的整数矩阵 heights , heights[r][c] 表示坐标 (r, c) 上单元格 高于海平面的高度 。

岛上雨水较多,如果相邻单元格的高度 小于或等于 当前单元格的高度,雨水可以直接向北、南、东、西流向相邻单元格。水可以从海洋附近的任何单元格流入海洋。

返回网格坐标 result 的 2D 列表 ,其中 result[i] = [ri, ci] 表示雨水从单元格 (ri, ci) 流动 既可流向太平洋也可流向大西洋 。

  • 对应函数标签: 

  •  算法思路:

正难则反。 如果直接去判断某⼀个位置是否既能到⼤西洋也能到太平洋,会重复遍历很多路径。 我们反着来,从⼤西洋沿岸开始反向 dfs ,这样就能找出那些点可以流向⼤西洋;同理,从太平洋沿 岸也反向 dfs ,这样就能找出那些点可以流向太平洋。那么,被标记两次的点,就是我们要找的结果

 

代码详解:

class Solution {
    int m ,n;
    int[] dx = {0,0,1,-1};
    int[] dy = {1,-1,0,0};
    public List<List<Integer>> pacificAtlantic(int[][] heights) {
        m = heights.length;
        n = heights[0].length;
        boolean[][] pac = new boolean[m][n];
        boolean[][] atl = new boolean[m][n];

        //先搞太平洋
        for(int j = 0;j < n;j++) dfs(heights,0,j,pac);
        for(int i = 0;i < m;i++) dfs(heights,i,0,pac);

        //在搞大西洋
        for(int i = 0;i < m;i++) dfs(heights,i,n - 1,atl);
        for(int j  = 0;j < n;j++) dfs(heights,m - 1,j,atl);

        //再提取结果:
        List<List<Integer>> res = new ArrayList<>();
        for(int i = 0;i < m;i++){
            for(int j = 0;j < n;j++){
                if(pac[i][j] && atl[i][j]){
                    List<Integer> temp = new ArrayList<>();
                    temp.add(i);temp.add(j);
                    res.add(temp);
                }
            }
        }
        return res;
    }

    public void dfs(int[][] heights,int i,int j,boolean[][] used){
        used[i][j] = true;
        for(int k = 0;k < 4;k++){
            int x = i + dx[k],y = j + dy[k];
            if(x >= 0 && x < m && y >= 0 && y < n 
            && !used[x][y] && heights[x][y] >= heights[i][j]){
                dfs(heights,x,y,used);
            }
        }
    }
}

运行结果:

 

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

评论 77
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值