网上没找到适合新手小白的教程,看了些教程,但还是没法解决自己遇到的问题。记录下自己的过程,希望能提供点帮助。
默认已经部署好了yolov5。
安装部署yolov5可参考以下:
ubuntu20.04配置YOLOV5(非虚拟机)_ubuntu系统实现yolov5没有显卡-CSDN博客
目录
一、数据集下载
coco数据集一共包含80个类别。coco2017数据集中训练集118287张,验证5000张,测试集40670张。
可通过以下链接下载数据集:
COCO - Common Objects in Context
这里一共下载4个文件:2017 Train images、2017 Val images、2017 Test images、2017Train/Val annotations。训练集118287张,验证5000张,测试集40670张
二、建立数据集文件夹
在yolov5源码文件夹下新建文件夹,命名为datasets。并依次建立以下文件夹。将下载的文件,解压缩至对应的文件夹。注意:labels里的标签文件,稍后运行代码会自动生成。
三、coco数据集格式转换为标签文件
annotations文件里含有三种类型的标注文件:object instance(目标实例,用于目标检测)、object keypoints(目标上的关键点,用于姿态估计)、image captions(看图说话)。用到的主要是object instance目标检测。
新建一个py文件,并把以下代码复制进去。
#COCO 格式的数据集转化为 YOLO 格式的数据集
#--json_path 输入的json文件路径
#--save_path 保存的文件夹名字,默认为当前目录下的labels。
import os
import json
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser()
#这里根据自己的json文件位置,换成自己的就行
parser.add_argument('--json_path', default='datasets/coco/annotations_trainval2017/annotations/instances_train2017.json',type=str, help="input: coco format(json)")
#这里设置.txt文件保存位置
parser.add_argument('--save_path', default='datasets/coco/labels/train2017', type=str, help="specify where to save the output dir of labels")
arg = parser.parse_args()
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = box[0] + box[2] / 2.0
y = box[1] + box[3] / 2.0
w = box[2]
h = box[3]
#round函数确定(xmin, ymin, xmax, ymax)的小数位数
x = round(x * dw, 6)
w = round(w * dw, 6)
y = round(y * dh, 6)
h = round(h * dh, 6)
return (x, y, w, h)
if __name__ == '__main__':
json_file = arg.json_path # COCO Object Instance 类型的标注
ana_txt_save_path = arg.save_path # 保存的路径
data = json.load(open(json_file, 'r'))
if not os.path.exists(ana_txt_save_path):
os.makedirs(ana_txt_save_path)
id_map = {} # coco数据集的id不连续!重新映射一下再输出!
with open(os.path.join(ana_txt_save_path, 'classes.txt'), 'w') as f:
# 写入classes.txt
for i, category in enumerate(data['categories']):
f.write(f"{category['name']}\n")
id_map[category['id']] = i
# print(id_map)
#这里需要根据自己的需要,更改写入图像相对路径的文件位置。
list_file = open(os.path.join(ana_txt_save_path, 'train2017.txt'), 'w')
for img in tqdm(data['images']):
filename = img["file_name"]
img_width = img["width"]
img_height = img["height"]
img_id = img["id"]
head, tail = os.path.splitext(filename)
ana_txt_name = head + ".txt" # 对应的txt名字,与jpg一致
f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')
for ann in data['annotations']:
if ann['image_id'] == img_id:
box = convert((img_width, img_height), ann["bbox"])
f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))
f_txt.close()
#将图片的相对路径写入train2017或val2017的路径
list_file.write('./images/train2017/%s.jpg\n' %(head))
print("convert successful!")
list_file.close()
注意:把--json_path和--save_path更改为自己的路径。并根据划分的是训练集还是验证集,将后面出现的train2017或val2017进行更改。
ctrl+shift+p 在弹出框窗口搜索Python:选择解释器,选择自己创建的Python虚拟环境,这里是yolo。