rrr4074
码龄1年
关注
提问 私信
  • 博客:4,876
    4,876
    总访问量
  • 5
    原创
  • 127,887
    排名
  • 69
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山西省
  • 加入CSDN时间: 2023-12-21
博客简介:

2302_82104118的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    1
    当前总分
    54
    当月
    0
个人成就
  • 获得114次点赞
  • 内容获得0次评论
  • 获得140次收藏
创作历程
  • 5篇
    2024年
成就勋章
兴趣领域 设置
  • 编程语言
    c语言
  • 其他
    微信经验分享笔记
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

智能体开发学习笔记

定义:大模型通常指那些具有数十亿甚至上千亿参数的深度学习模型,如GPT-3、GPT-4、BERT等。特性:强大的生成和理解能力:能够生成高质量的文本,理解复杂的语境。预训练与微调:大模型通常通过在大规模数据集上的预训练获得一般语言知识,然后通过微调适应特定任务。多模态处理:最新的大模型能够处理文本、图像、音频等多种数据形式。
原创
发布博客 2024.08.26 ·
1100 阅读 ·
31 点赞 ·
0 评论 ·
25 收藏

大语言模型学习

LLM定义与特点:处理海量文本,多者可具备数百亿参数,理解语言深度,展现涌现能力。LLM国内外代表:i.国外有GPT系列、LLaMA等 ii.国内有文心一言、通义千问等。模型大小与性能能关系:与小模型构架相似,但参数量级提升带来解决复杂任务的显著优势。LLM应用实例:Chat GPT是LLM的对话应用典范,展示出与人类流畅自然的交互能力。计算机并不能直接理解字符,例如:“我喜欢你”可以拆解为“我”,“喜欢”,“你”,可以进行排序。
原创
发布博客 2024.08.08 ·
1565 阅读 ·
39 点赞 ·
0 评论 ·
37 收藏

阿里云天池学习

对于有序的分类数据(如教育水平、收入等级等),使用OneHot 编码可能会丢失这些数据的顺序信息。在模型训练完成后,使用测试集来检验模型的泛化能力,即模型在未见过的数据上的表现。验证集是可选的,用于在训练过程中调整模型参数,如选择模型结构、调整超参数等。在训练模型时,OneHot 编码后的数据可以直接输入到模型中,如决策树、随机森林、支持向量机等。OneHot 编码生成的向量通常是稀疏的,大多数元素都是0。通过走梯度的负方向并以恰当的步长来调整各个数据的权重,来拟合数据,得到更准确的预测结果。
原创
发布博客 2024.07.28 ·
396 阅读 ·
3 点赞 ·
0 评论 ·
10 收藏

Pandas学习笔记

可以理解为 使用Python进行类似于excel的操作进入环境后,输入:jupyter notebook ./打开打开学习文件.ipynb 是jupyter notebook的文件.csv可以理解为excel的文件。
原创
发布博客 2024.07.22 ·
1552 阅读 ·
36 点赞 ·
0 评论 ·
59 收藏

Python学习

函数代码块以def关键词开头,后接函数标识符名称和圆括号()。任何传入参数和自变量必须放在圆括号中间,圆括号之间可以用于定义参数。函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。函数内容以冒号 : 起始,并且缩进。return [表达式]结束函数,选择性地返回一个值给调用方,不带表达式的 return 相当于返回 None。文件打开与关闭:(很重要)
原创
发布博客 2024.07.18 ·
267 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏