基础知识简介
一、大语言模型(LLM)的概念
LLM定义与特点:处理海量文本,多者可具备数百亿参数,理解语言深度,展现涌现能力。
LLM国内外代表:i.国外有GPT系列、LLaMA等 ii.国内有文心一言、通义千问等。
模型大小与性能能关系:与小模型构架相似,但参数量级提升带来解决复杂任务的显著优势。
LLM应用实例:Chat GPT是LLM的对话应用典范,展示出与人类流畅自然的交互能力。
计算机并不能直接理解字符,例如:“我喜欢你”可以拆解为“我”,“喜欢”,“你”,可以进行排序。所以 大语言模型并不是一个一个字输出,而是一个一个token输出
二、LLM的发展历程
早期语言模型:采用统计学习预测词汇,受限于理解复杂语言规则。
深度学习的引入:Bengio在2003年将深度学习应用于语言模型,增强理解语言的能力。
Transformer架构优势:2018年左右,Transformer模型出现,通过大量文本训练理解语言规则。 大型语言模型时代:随着模型规模扩大,LLM展现出惊人能力,开启新纪元。
三、LLM的特点
在趋动云部署一个自己的大模型
https://eumgrqwyfu.feishu.cn/docx/LfNpdTGmXo79EuxPtyPckOJ9nYd#XJpbdkRZyovZPhxYOnbcnMvQn6e
以上是大模型应用的相关文件
创建项目,选择B1.medium规格服务器