大语言模型学习

基础知识简介 

一、大语言模型(LLM)的概念

LLM定义与特点:处理海量文本,多者可具备数百亿参数,理解语言深度,展现涌现能力。

LLM国内外代表:i.国外有GPT系列、LLaMA等        ii.国内有文心一言、通义千问等。

模型大小与性能能关系:与小模型构架相似,但参数量级提升带来解决复杂任务的显著优势。

LLM应用实例:Chat GPT是LLM的对话应用典范,展示出与人类流畅自然的交互能力。

计算机并不能直接理解字符,例如:“我喜欢你”可以拆解为“我”,“喜欢”,“你”,可以进行排序。所以 大语言模型并不是一个一个字输出,而是一个一个token输出

二、LLM的发展历程

早期语言模型:采用统计学习预测词汇,受限于理解复杂语言规则。
深度学习的引入:Bengio在2003年将深度学习应用于语言模型,增强理解语言的能力。
Transformer架构优势:2018年左右,Transformer模型出现,通过大量文本训练理解语言规则。 大型语言模型时代:随着模型规模扩大,LLM展现出惊人能力,开启新纪元。

三、LLM的特点

 在趋动云部署一个自己的大模型

https://eumgrqwyfu.feishu.cn/docx/LfNpdTGmXo79EuxPtyPckOJ9nYd#XJpbdkRZyovZPhxYOnbcnMvQn6e

 以上是大模型应用的相关文件

创建项目,选择B1.medium规格服务器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值