(增加细粒度资源管理)深入理解flink的task slot相关概念_flink taskmanager task slot(1)

本文介绍了Flink的Task Slot与并行度的关系,以及细粒度资源管理的重要性。通过实例解析了如何配置SSG,讨论了任务调度策略和资源分配。文章探讨了在不同场景下,细粒度资源管理如何提高资源利用率,包括在集群负载高时的优势以及批处理作业的执行效率问题。最后,提到了Flink 1.17版本的资源隔离优化,以及作者分享的大数据学习资源。
摘要由CSDN通过智能技术生成

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注大数据)
img

正文

原因二:为了防止同一个 slot 包含太多的 task,或者我们希望把计算逻辑复杂的算子单独使用 slot ,提高计算速度。

其实,SSG就是对 operator 进行分组,同一个 group 的不同 operator task 可以共享同一个 slot(相同operator task是不能共享同一个slot的,因为需要保证资源利用率尽量高)。

要想确定一个未做SlotSharingGroup设置的算子的group是什么,可以根据上游算子的 group 和自身是否设置 group共同确定(也就是说如果下游算子没有设置分组,它继承上游算子的分组);

只有属于同一个slot共享组的子任务,才会开启slot共享;不同组之间的任务是完全隔离的,必须分配到不同的slot上。在这种场景下,总共需要的slot数量,就是各个slot共享组最大并行度的总和。例如,如果不设置SlotSharingGroup,默认所有task在同一个共享组(可以共享所有slot),那么Flink集群需要的任务槽与作业中使用的最高并行度正好相同。但是如下图所示,如果我们强制指定了map的slot共享组为test,那么map和map下游的组为test,map的上游source的共享组为默认的default,此时default组中最大并行度为10,test组中最大并行度为20,那么需要的Slot=10+20=30;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值