Codeforces Round 784 (Div. 4) 题意要我们找出这样的字符串的对数:这两个字符串只有一个位置对应的字符不同。我们可以用二维数组记录每种字符串的个数,再模拟即可。,操作次数是不限的,所以只需要判断初始条件下所有奇数位置的元素奇偶性是否一致,和所有偶数位置的奇偶性是否一致。的字符串最终都可以实现。因此,我们只需要判断所有连续。因为每次操作都是对所有的奇数位置或者所有的偶数位置。经过分析验证,任意连续区间内同时包含。,就需要归零空单元格数,重新向上查找。遍历每一列,从下往上找连续空单元格。相向前后指针,注意边界的处理。,如果在这过程中遇到石头。
最小生成树(Kruskal算法和Prim算法) Kruskal算法适用于稀疏图,需要排序所有边。Prim算法适用于密集图,通过最小堆实现贪心选择。这两种算法都是解决最小生成树问题的经典方法,根据图的特性选择合适的算法可以提高效率。
并查集算法 (Union-Find)是一种数据结构,主要用于解决一些动态连通性问题,比如判断两个节点是否属于同一个集合,以及合并两个集合。它在图论中的应用非常广泛,比如最小生成树(Kruskal算法)和网络连通性问题。接下来,我将详细介绍并查集的基本原理及实现。
Educational Codeforces Round 151 (Rated for Div. 2) 【代码】Educational Codeforces Round 151 (Rated for Div. 2)
最短路算法(Dijkstra算法和Floyd算法) 迪杰斯特拉算法是一种高效的单源最短路径算法,广泛应用于网络路由、地理信息系统等领域。通过结合最小堆可以有效优化其性能,但仅适用于非负权重图。弗洛伊德算法在处理任意两点间最短路径问题中具有较高的效率,尤其适合处理小规模的稠密图。在包含负权边的情况下也可以正确执行,广泛应用于路径优化、交通网络等领域。
Codeforces Round 944 (Div. 4) 固定其中一条直线,根据另一条直线的状态进行判断。重新进行排列,问是否存在排列后的字符串。输入两个数,分别输出较小值和较大值。找到两个互不相同的字符进行。
二叉排序树 int val;// 节点的值// 左子节点指针// 右子节点指针TreeNode(int v) : val(v), left(nullptr), right(nullptr) {} // 构造函数private:// 树的根节点public:BinarySearchTree() : root(nullptr) {} // 构造函数// 插入节点// 查找节点// 删除节点// 中序遍历(验证结果)private:// 插入节点(递归实现)// 创建新节点。
Codeforces Round 984 (Div. 3) 与蛇形填数思路一致,用偏移量法求取每一个外围的字符串,统计这个字符串在循环移位后包含。的个数,然后计算在改变位置改变后对改变前的影响(可以分别计算在改变位置处。的个数,计算差值),注意遍历的边界范围。时的边界(计算多少个)哈希表(数组哈希或者。子串的最大个数,加到。
Educational Codeforces Round 168 (Rated for Div. 2) 给出一个正则括号序列,但是奇数位置的字符都缺失了,只保留了偶数位置上的字符,求出使括号序列合法时的最小代价。注意:偶数位置上的的字符是已知的,那么可以贪心使每个左括号尽可能早得匹配。