1.Triplet Attention模块
Triplet Attention模块是一种用于计算机视觉任务的注意力机制,旨在增强卷积神经网络(CNN)的特征表达能力。它通过同时考虑通道维度和空间维度的交互关系,有效地捕捉特征图中的重要信息。该模块由三个并行的注意力分支组成,分别处理通道维度和两个空间维度(高度和宽度),因此得名“Triplet Attention”。

1. Triplet Attention的核心思想
-
传统的注意力机制(如SENet、CBAM等)通常单独处理通道注意力或空间注意力,而Triplet Attention则同时考虑通道和空间维度的交互。
-
通过三个分支分别计算通道注意力和两个空间注意力,Triplet Attention能够更全面地捕捉特征图中的重要信息。
2. Triplet Attention的结构
Triplet Attention模块由三个并行的注意力分支组成:
-
通道注意力分支:<
ResNet添加Triplet Attention模块改进
订阅专栏 解锁全文
1718

被折叠的 条评论
为什么被折叠?



