ResNet改进(6):添加Triplet Attention模块考虑通道维度和空间维度的交互关系

ResNet添加Triplet Attention模块改进

1.Triplet Attention模块 

Triplet Attention模块是一种用于计算机视觉任务的注意力机制,旨在增强卷积神经网络(CNN)的特征表达能力。它通过同时考虑通道维度空间维度的交互关系,有效地捕捉特征图中的重要信息。该模块由三个并行的注意力分支组成,分别处理通道维度和两个空间维度(高度和宽度),因此得名“Triplet Attention”。

1. Triplet Attention的核心思想

  • 传统的注意力机制(如SENet、CBAM等)通常单独处理通道注意力或空间注意力,而Triplet Attention则同时考虑通道和空间维度的交互。

  • 通过三个分支分别计算通道注意力和两个空间注意力,Triplet Attention能够更全面地捕捉特征图中的重要信息。

2. Triplet Attention的结构

Triplet Attention模块由三个并行的注意力分支组成:

  1. 通道注意力分支:<

<think>好的,我现在需要解释用户提供的不同特征维度。首先,用户列出了四个特征维度ResNet的25088维,Autoencoder的25088维,HOG的3780维,以及LBP的256维。我需要逐一分析每个特征是如何得到的,并解释其维度的来源。首先,ResNet的特征维度。用户之前的代码中修改了ResNet18的结构,移除了最后的全连接层平均池化层。ResNet18通常在前面的卷积层后会有一个全局平均池化,然后是全连接层输出1000维。但代码中移除了最后两个层,所以保留的是卷积层的输出。假设最后一个卷积层的输出是512个通道,特征图大小为7x7(因为输入是224x224,经过多次下采样到7x7),那么特征维度应该是512*7*7=25088。这应该就是ResNet特征维度的来源。接下来是Autoencoder的特征维度。用户定义的Autoencoder结构中有两个卷积层两个最大池化层。输入假设是224x224的RGB图像,经过第一次卷积(16通道,3x3卷积,padding保持尺寸),然后最大池化(2x2,尺寸减半为112x112)。第二次卷积得到8个通道,再次池化到56x56。所以特征图的维度是8x56x56,展开后就是8*56*56=25088维,ResNet一致。但需要确认预处理是否改变了输入尺寸,比如预处理中的Resize(256)CenterCrop(224),可能影响后续计算,但Autoencoder的结构可能没有考虑到这一点,导致实际输出可能与预期不同?然后是HOG特征。HOG的方向数设置为9,像素每个单元为8x8,块的大小为2x2单元。输入图像被调整到128x64像素。计算每个单元的梯度方向,然后块内归一化。对于128x64的图像,每个方向有9个bin,每个块有2x2的单元,每个单元贡献9个方向,所以每个块的特征数是9*2*2=36。横向有多少个块呢?128像素宽,每8像素一个单元,横向有16个单元,每个块横向移动2个单元,所以横向块数是15(16-1)。同样纵向64像素高,每8像素一个单元,纵向8个单元,块数是7(8-1)。总块数是15*7=105个块,每个块36维,所以总特征数是105*36=3780。这个计算是否正确?需要确认HOG的参数设置计算方式。 最后是LBP特征。使用16个采样点,半径2,方法为'uniform',这会生成均匀模式,直方图bin的数量是256。因为LBP计算后的图像每个像素点得到一个模式值,然后统计直方图,范围0到255,所以有256个bin,因此特征维度是256。但可能需要确认是否使用了均匀模式,因为均匀模式的LBP通常bin的数量会更少,比如59个。但用户代码中使用的是np.histogram(lbp, bins=256),所以不管模式如何,都强制分成了256个bin,所以特征维度是256。在解释这些的时候,需要确保每个计算步骤的正确性,尤其是HOGLBP的参数设置是否与代码中的一致。同时,要检查代码中的预处理步骤是否影响了特征图的尺寸,例如ResNetAutoencoder的输入是否经过预处理导致尺寸变化,从而影响特征维度。例如,预处理中的Resize(256)CenterCrop(224)可能影响Autoencoder的输入尺寸,进而影响特征图的大小,但用户定义的Autoencoder结构可能没有考虑到这一点,导致实际的特征维度可能与预期不同。需要确认代码中的具体实现,确保解释的准确性。可能存在的错误点:在Autoencoder的结构中,输入尺寸是否确实是224x224?因为预处理后的图像是224x224,经过两次池化(每次尺寸减半),所以第一次池化后是112x112,第二次池化后是56x56,所以特征图确实是8x56x56,展开为25088维。这部分是正确的。总结:需要分步骤解释每个特征维度的计算过程,结合代码中的参数设置,确保用户理解每个数字的来源。</think>以下是各特征维度的详细解释: ### 一、ResNet特征维度 (25088,) ```python # ResNet18结构修改后的特征计算 self.resnet = torch.nn.Sequential( *(list(base_model.children())[:-2]) # 移除最后两个层 ) ``` **维度计算原理:** 1. 输入图像尺寸:224x224 (经过预处理管道) 2. 最后一个卷积层输出:512个通道 × 7x7特征图 3. 计算公式:`512通道 × 7高度 × 7宽度 = 25088` 4. 展平操作:`features.cpu().numpy().flatten()` ### 二、Autoencoder特征维度 (25088,) ```python class Autoencoder(torch.nn.Module): def __init__(self): super().__init__() self.encoder = torch.nn.Sequential( torch.nn.Conv2d(3, 16, 3, padding=1), # 保持224x224 torch.nn.MaxPool2d(2), # 112x112 torch.nn.Conv2d(16, 8, 3, padding=1), # 保持112x112 torch.nn.MaxPool2d(2) # 56x56 ) ``` **维度计算过程:** 1. 输入尺寸:224x224x3 2. 第一次池化后:112x112x16 3. 第二次池化后:56x56x8 4. 展平维度:`8通道 × 56高度 × 56宽度 = 25088` ### 三、HOG特征维度 (3780,) ```python hog(resized_img, orientations=9, pixels_per_cell=(8,8), cells_per_block=(2,2), channel_axis=-1) ``` **维度计算步骤:** 1. 输入尺寸:128x64 (resize(img_array, (128, 64))标准化) 2. 单元划分: - 宽度方向:128/8 = 16个单元 - 高度方向:64/8 = 8个单元 3. 块划分: - 每个块包含2x2单元 - 宽度块数:16 - 1 = 15 - 高度块数:8 - 1 = 7 4. 特征计算: - 每个块特征数:9方向 × (2x2单元) = 36 - 总特征数:15宽度块 × 7高度块 × 36 = 3780 ### 四、LBP特征维度 (256,) ```python lbp = local_binary_pattern(gray, P=16, R=2, method='uniform') np.histogram(lbp, bins=256, range=(0, 256))[0] ``` **维度解释:** 1. LBP计算产生0-255的灰度值 2. 使用256个直方图bin统计出现频率 3. 每个bin对应一个灰度值出现的次数 4. 最终得到256维的统计直方图 **可视化对比:** | 方法 | 输入尺寸 | 关键参数 | 输出维度 | |------|----------|----------|----------| | ResNet | 224x224 | 512通道7x7 | 25088 | | Autoencoder | 224x224 | 8通道56x56 | 25088 | | HOG | 128x64 | 9方向/8px单元 | 3780 | | LBP | 原图尺寸 | 16采样点 | 256 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值