PyTorch的数据初加载及Datase的运用

一、Datase与Dataloader

1.Datase

提供一种方式去获取数据及其Lable,要做到

(1)如何和获取每一个数据及其lable

(2)告诉我们总共有多少数据(方便对神经网络进行迭代训练)

2.Dataloader

将数据进行打包,为后面的网络提供不同的数据形式

二、Dataset的初使用

1.下载一个数据集

蚂蚁蜜蜂数据集下载地址:链接: https://pan.baidu.com/s/1jZoTmoFzaTLWh4lKBHVbEA 密码: 5suq

2.打开Pycharm

新建一个python文件

导入并了解Dataset类的相关用法

help(Dataset)显示官方对Dataset的解释

Dataset是一个抽象类所有的dataset(数据集)都需要去继承这一个类,所有的子类都要去重写__getitem__,以获取每一个数据及其lable;还可以去重写一个__len__去获取相关数据集的长度,实现上文提到的Dataset的两个功能。

构造一个类命名为Mydata继承于Dataset

进行初始化和getitem和len的方法构造(先搭好一个框架,后面再补充)

导入Image库来读取图片信息,并利用控制台来进行调试

将下载好的数据集导入与python文件同一文件夹下,然后进行一个测试。选择一张图片右键,选择复制其路径(路径分为相对路径和绝对路径)既然我们将数据集放在了同一文件夹下,我们即可以是使用相对路径来进行使用。

我们使用控制台来进行测试,先将一张图片的路径赋值给img_path,我们就可以看到右侧出现了相关变量。我们使用Image的open方法来读取这张图片,右侧也会显示相关数据。

使用show方法显示图片。

导入os系统库,并使用listdir方法,利用上一级文件夹路径,形成列表储存所有图片名称

下面就是基于上述listdir方法来构造出完整的图片路径

首先进行我们需要的数据的初始化

os.path.join方法的解释,我们使用该方法来获取存储图片的文件夹的地址

书写getitem的方法来获取每张图片信息和lable

书写len的方法来获取所有的数据数量

构造两个Dataset并验证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值