神州问学
码龄1年
关注
提问 私信
  • 博客:118,489
    118,489
    总访问量
  • 96
    原创
  • 13,803
    排名
  • 1,232
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:神州问学是围绕生成式AI技术的交流号,与开发者和合作伙伴共同探究有深度的Gen AI技术前沿洞见、技术迭代、案例解析、方法和实践,助力企业数字化转型

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2024-01-05
博客简介:

2401_82452722的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    812
    当月
    18
个人成就
  • 获得1,822次点赞
  • 内容获得20次评论
  • 获得1,795次收藏
创作历程
  • 96篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

英伟达 GPU 架构:演进与模型推理速度的深度关联

H200 的显存从 H100 的 80GB 提升到了 141GB,更大的显存容量可以容纳更大规模的模型和数据,减少数据在内存和硬盘之间的交换次数,从而提高推理速度。当然也并不是所有的场景都适合NVLink的,PCIe的GPU的优势主要体现在其出色的灵活性和实用性,对于工作负载小、追求GPU数量平活配置的场景,PCIe版的GPU无疑是个更好的选择,而对于GPU间互联带宽有着极高需求的大规模AI模型的训练任务,SXM版的GPU凭借其无可匹敌的NVLink宽带和极致的性能则成为首要选择。然而,竞争也将促进合作。
原创
发布博客 2024.11.01 ·
900 阅读 ·
10 点赞 ·
0 评论 ·
12 收藏

模型剪枝,如何把模型的使用成本降下来?

传统的剪枝方法通常采用全局统一的稀疏率,忽略了不同层的重要性差异,可能导致关键层被过度剪枝,影响模型的整体性能。通过减少模型的参数量,剪枝不仅能显著降低计算资源的需求,还能提高模型的运行效率,使模型更适合部署在资源受限的环境中,如移动设备和嵌入式系统。的研究进展,展示了通过自动化和精细化的剪枝策略,可以在保持模型性能的同时,大幅降低模型的计算和存储成本。未来,随着剪枝技术的不断发展和成熟,我们有望看到更加高效、低成本的模型应用,为人工智能的普及和发展注入新的活力。据估计,GPT-3的训练成本在。
原创
发布博客 2024.11.01 ·
716 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

AI Agent智能数字员工解决案例

大模型不仅可以通过丰富的语义理解能力,提升对业务场景的适应性,还能生成高质量的自动化流程,减少企业对人工操作的依赖。接下来,系统会将客户的请求自动录入到相应的业务系统中,例如,运营商将宽带迁移请求录入工单系统,金融机构则将贷款申请及身份证信息录入信贷系统,而电商则处理换货申请。早期的数字员工主要依赖于预设的规则和流程,但随着大模型技术的不断进步,智能体现在能够自主识别任务、动态调整执行策略,并在实际应用中展示出更高的灵活性和智能化水平。其次,由于团队规模庞大,需要数百名员工,这使得人力成本大幅增加。
原创
发布博客 2024.10.25 ·
1041 阅读 ·
21 点赞 ·
0 评论 ·
9 收藏

MemoRAG:重新定义长期记忆的AI问答模型

尽管项目仍处于初期阶段,MemoRAG 已通过项目代码实现了快速部署,并支持中文语料处理,未来将持续优化模型的轻量化、记忆机制的多样性以及应用广泛性,推动 AI 问答技术的进一步发展。”时,可能只能给出一个模糊的概述,但通过快速查阅相关章节,可以找到具体的细节,从而归纳出一个完整的答案。右侧图展示了MemoRAG通过构建覆盖整个数据库的全局记忆,在接收到查询后,首先回忆出相关线索,从而检索到更有用的信息,提供更加准确和全面的答案。通过增加 beacon_ratio 参数,模型可以处理更长的上下文。
原创
发布博客 2024.10.25 ·
1026 阅读 ·
20 点赞 ·
0 评论 ·
22 收藏

探秘AIPC软件:云端和本地如何奏响混合乐章

在撰写文档方面,无论是撰写文章、报告还是邮件,用户只需输入主题和关键要点,豆包就能先为用户提供大纲,供用户参考及修改,再根据改好的大纲生成文档,帮助用户更高效地完成任务。华为的昇腾系列 AI 芯片,如昇腾 910B 等,具备强大的算力和能效比,配合其 CANN 等计算加速框架,为端侧大模型的应用和部署提供了完整的解决方案。在模型推理时,用户还可以根据实际需求对模型的配置进行调整,例如调整模型的参数、选择不同的模型版本等,以获得更符合自己需求的结果。Ollama 是一个通用的模型调用框架,具有很强的适应性。
原创
发布博客 2024.10.09 ·
1100 阅读 ·
10 点赞 ·
0 评论 ·
26 收藏

RAG测评关键指标

因此,检索器必须确保找到的资料高度相关,避免噪声和无关信息的干扰,否则会直接影响到生成环节的表现。你有一个很聪明的助手(相当于大型语言模型,LLM),但他也不是万能的,需要查阅外部信息来给出最好的答案。像 GPT-4 或 GPT-1o 这样的高级模型,通常能提供较高的生成质量,确保答案的准确性和连贯性。”),结合刚刚找到的资料,生成一个完整、准确的回答告诉你。4. 引文精度(citation precision):与特定主题相关的文献数量与检索到的内容的比例,接近于上下文有效率的概念。
原创
发布博客 2024.10.09 ·
1155 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

李沐:如果有什么事这一辈子总要试下的,就趁早

“We're building something big ... stay tuned. Talk to me if you want to work on scalable foundation models.”“我们正在建造一个大项目……请继续关注。如果你想在可扩展基础模型上工作,请告诉我。”©作者|Zhongmei来源|神州问学去年二月,“参数服务器之父“Alex Smol教授和当时的亚马逊首席科学家李沐从亚马逊云科技(AWS)离职,创办了一家名为Boson.ai的人工智能公司。当时公司官网都在建设
原创
发布博客 2024.09.29 ·
1003 阅读 ·
17 点赞 ·
0 评论 ·
6 收藏

黑神话热潮,能引发GPU狂欢的才是杀手级应用

黑神话:悟空》作为一个国产 IP 和国产游戏,会带动大量的中国玩家尝试,一些轻度游戏用户以及之前不是很活跃的游戏存量用户也加入进来,从而对中国游戏终端市场的换机起到一定的拉动作用。而随着时间的推移,其热度依旧不减,据 VG Insights 的最新数据显示,《黑神话:悟空》在 Steam 平台的销量已达 1890 万份,总收入超过 9.05 亿美元(约合人民币 64.48 亿),甚至有突破 1900 万份,收入达 64.9 亿元的趋势。另一方面,产业也期待着更多新软件的爆发,以带动硬件市场的持续繁荣。
原创
发布博客 2024.09.29 ·
595 阅读 ·
14 点赞 ·
0 评论 ·
18 收藏

数据先行 -- Scale AI如何通过AI数据服务成为独角兽

Scale AI 主要服务于政府和企业客户,特别是那些需要复杂云服务的公司,而 Hive 则聚焦于市场、约会应用程序以及其他B2C和点对点导向的公司,推广其预构建的AI模型。众多知名企业,如 Lyft、Toyota、Airbnb 和通用汽车,依赖 Scale AI 的数据引擎来获取精确的标注数据,以推动他们的 AI 项目的成功。Scale AI的主要目标是通过自动化工具和人力审核相结合的方式,为企业提供精准的数据标注服务,从而提高人工智能模型的准确性和性能。数据标注结合人工智能技术和人机交互进行高效处理。
原创
发布博客 2024.09.27 ·
1343 阅读 ·
7 点赞 ·
0 评论 ·
15 收藏

解析 Llama-Factory:从微调到推理的架构

此外,Llama-Factory 配备了用户友好的 LlamaBoard Web 界面,降低了使用门槛,使得即便是没有深厚编程背景的用户,也能轻松进行模型微调和推理操作。这不仅减少了模型的内存占用,还提升了微调和推理的速度。这些技术在不显著影响模型性能的前提下,提升了推理速度,使得 Llama-Factory 能够在资源有限的环境中,仍然保持高效的推理能力。随着技术的不断发展和应用场景的扩展,Llama-Factory 有望在未来的 AI 生态中占据重要的位置,推动整个行业的创新与进步。
原创
发布博客 2024.09.27 ·
1230 阅读 ·
22 点赞 ·
0 评论 ·
25 收藏

RAG领域出现技术创新,或将引领AI搜索重大变革?

通过引入用户中心化的多智能体系统,PersonaRAG有效地增强了检索增强生成模型的个性化和精确性,并提供了一种有效的解决方案。通过个性化和动态调整,让搜索结果不再仅仅是关键词匹配的列表,而是为用户量身定制的信息体验,提升了智能搜索的精准度和用户满意度。具体来说,RAG流程是根据用户的查询,从海量的文档或者数据中检索出相关的信息片段。然后用大模型生成有用的回答。PersonaRAG更像一个经验丰富的出色导游,能够在与游客的交谈当中调整旅游路线,并且记住游客的兴趣和喜好,为后续旅程提供定制方案。
原创
发布博客 2024.09.27 ·
861 阅读 ·
8 点赞 ·
0 评论 ·
19 收藏

使用 LlamaIndex 进行 CRAG 开发用来强化检索增强生成

我从论文《Corrective Retrieval Augmented》中截取了如下的示意图,在该示意图中描绘了如何构建一个检索评估器来评估检索到的文档与输入的问题的相关性。该评估器是“检索增强生成”(Retrieval-Augmented Generation,RAG)的关键组成部分,通过审查和评估检索到的文档的相关性和可靠性,帮助生成有价值的信息。检索评估器涉及到一种算法,该算法确保检索到的信息的细化,优化关键信息的提取并最大限度地减少非必要信息被检索到,从而提高检索到的数据的利用率。
原创
发布博客 2024.09.27 ·
1115 阅读 ·
42 点赞 ·
0 评论 ·
11 收藏

LLM如何结合知识图谱进行RAG

知识图谱这个术语最早是由谷歌在2021年的5月提出,作为器增强搜索的结果,向用户提供更多的上下文信息,知识图谱旨在理解实体之间的关系,并直接提供查询的答案。除此之外基础的RAG因为是基于相似度进行查询的,所以很难处理需要汇总整个数据集的信息才能得到的答案,比如“数据中的前五个主题是什么”这种类似的查询,因为基础的RAG基于数据集内的文本内容的向量搜索,所以最终往往很难查询到正确的信息,,但是借助GraphRAG则可以回答这类问题,如在这次的实验中。在这个实验中,分别基于RAG和GraphRAG进行提问。
原创
发布博客 2024.09.27 ·
737 阅读 ·
17 点赞 ·
0 评论 ·
10 收藏

商汤SenseNova 5.5大模型的应用实践

2024世界人工智能大会(WAIC)期间,作为全球医疗大模型创新先行者,商汤科技与瑞金医院深度合作,构建了全院智慧影像云平台,实现了影像数据的互联互通及多项智能化功能,如移动阅片、远程会诊、AI辅助诊疗等,为医院提供了现代化智慧医疗的坚实基础。日日新5.5 Lite是商汤公司专为端侧模型进行升级而推出的模型,在提高模型精度的同时,成功降低了首包延迟40%,推理效率也提升了15%,性能指标更优,推理速度更快,端侧模型矩阵更完善。在多模态融合方面,实现从图文到视频的全面突破,带来更加身临其境的人机交互体验。
原创
发布博客 2024.09.27 ·
695 阅读 ·
28 点赞 ·
0 评论 ·
21 收藏

AI驱动的智能运维:行业案例与挑战解析

与传统运维方法相比,这些新概念在管理和维护AI产品时,更强调了动态模型管理、自动化故障检测和智能化问题解决,不断深刻改变了构建和维护AI应用的方式,推动了运维工具和实践的全面进化。AI系统虽然可以处理常规的操作,但对于一些突发的、复杂的或需要高度判断力的问题,仍需依赖于运维人员的经验和智慧。它通过智能分析和优化建议,提高系统和流程的整体效率。AI运维这个概念不可否认是相当美好的,他的优点也显而易见:解放我们的双手和大脑,也就是解放人力,就这一个优点就是非常大的,而且这也应该是AI在绝大多数应用领域的优点。
原创
发布博客 2024.09.27 ·
866 阅读 ·
19 点赞 ·
0 评论 ·
22 收藏

给RAG开药方:亚马逊发布RAGChecker,专治AI回答不准

作为一位开发者,RAGChecker是不可或缺的得力助手,它的出现,不仅为生成式AI的应用打开了新的大门,也为未来AI技术的发展指明了方向,现在的RAG系统不再完全是一个黑匣子,开发者可以从中剖析具体问题具体分析。更强的自适应能力:未来的RAGChecker可能会具备更强的自适应能力,能够根据不同的应用场景自动调整优化策略,为不同领域的开发者提供量身定制的解决方案。上下文精确率衡量的是检索到的信息中有多少是与问题直接相关的,上下文精确率越高,生成器使用的信息质量越好,生成的答案也更有可能准确。
原创
发布博客 2024.09.12 ·
1021 阅读 ·
18 点赞 ·
0 评论 ·
9 收藏

为什么AI PC需要NPU?

此外,在医疗保健领域,NPU能够处理复杂的医疗数据,帮助实现更早、更精确的诊断,并支持个性化治疗方案的制定,为患者提供更好的医疗服务。NPU 架构设计的核心特点在于集成了大量的计算单元阵列,如 Intel NPU 的神经计算引擎和 AMD XDNA 的 AI 引擎块,这些单元内置向量和标量处理器,并利用片上内存和定制数据流,避免了数据频繁利用总线在CPU、GPU以及内存中交换,实现高效、低功耗的 AI 计算。相较于传统的CPU和GPU,NPU在执行复杂神经网络任务时具有更高的效率和更低的功耗。
原创
发布博客 2024.09.12 ·
785 阅读 ·
5 点赞 ·
0 评论 ·
7 收藏

大模型时代,传统程序员还需要写代码吗?

最后,我认为在角色转化的过程中最后等待我们的,并且难度很高的内容就是需要深入学习AI的底层原理,尤其是大模型的架构。我们在实现大多数模块需求的时候,通过是针对这个模块进行CRUD(增删查改)的代码编写,这个代码通过会加入一些异常判断或者实体类转化等操作,所以无法避免还是会产生一些重复的工作量,这个不需要脑力的重复操作也可以交给AI完成。可以看出其完整的编写关于用户标签的业务模块的代码,虽然业务逻辑很简单,但是我们可以在提示词中告诉他更多业务相关的判断逻辑,那么他就可以生成复杂的业务逻辑代码。
原创
发布博客 2024.09.10 ·
1112 阅读 ·
16 点赞 ·
0 评论 ·
25 收藏

AI模型“减肥”风潮:量化究竟带来了什么?

量化技术通过降低模型的计算需求和存储空间,使得在资源受限的环境中,复杂的神经网络也能高效运行。大模型在NLP和CV领域的广泛应用中展现了强大的能力,但随着模型规模的扩大,对计算和存储资源的需求也急剧增加,特别是在资源受限的设备上面临挑战。从智能量化算法的开发到自适应量化策略的引入,再到与其他优化技术的结合,未来的量化技术将更加智能化和高效,为AI技术的发展提供强有力的技术支持。通过量化技术,如INT8量化和FP4量化,可以有效降低内存需求,同时保持模型的推理性能,使得模型在这些设备上能够以较高的效率运行。
原创
发布博客 2024.09.10 ·
927 阅读 ·
23 点赞 ·
0 评论 ·
9 收藏

100%结构化输出——OpenAI新功能大幅增强工具调用

例如,在客户信息录入阶段,模型会按照我们定义的格式输出客户详情,后续步骤可以直接使用这些信息,无需额外的格式转换,极大提高了系统的效率和稳定性。说完了好处和优点,如果我们换一个角度来看OpenAI的此次更新,作为AI龙头的OpenAI在GPT爆火后的近两年时间内,模型迭代速度和模型能力增长都十分迅速,反观这次大动干戈的从JSON格式化来规范模型输出,而没有从模型自身审视输出不规范的问题,这何尝不是一种“雕花”工作呢?尽管模型的性能显著提升,在基准测试中达到93%的准确性,但模型的固有不确定性仍然存在。
原创
发布博客 2024.09.03 ·
1673 阅读 ·
34 点赞 ·
0 评论 ·
14 收藏
加载更多