【ORB_SLAM系列1】—— 如何在Ubuntu18.04中安装运行非ROS版本的ORB_SLAM3跑官方数据集(全程手把手教学安装)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


ORB_SLAM3的介绍

ORB-SLAM3是一款基于特征点的实时单目SLAM系统,是SLAM领域的研究热点之一。它的核心算法是结合了ORB特征点提取和描述子匹配、单目RGB相机的深度估计、运动估计和地图优化等步骤,能够在实时性和精度之间取得平衡,适用于各种环境下的定位和建图任务。在各种应用领域都有广泛的应用,如室内导航、自动驾驶、机器人导航、增强现实等。通过在移动机器人和自主系统中实现实时的SLAM功能,ORB-SLAM3为机器人领域的研究和应用提供了强大的支持,帮助机器人实现自主导航和定位。

ORB-SLAM3的算法原理主要包括以下几个步骤:首先,通过ORB特征点提取和描述子匹配来进行特征点的追踪和匹配;然后利用单目RGB相机的深度信息进行稀疏或稠密的深度估计;接着通过运动估计来估计相机的运动和姿态变换;最后通过地图优化来不断修正和优化地图的几何结构,从而实现实时的定位和建图。

总的来说,ORB-SLAM3作为一款领先的实时SLAM系统,不仅在技术上具有重要意义,还在社会和经济发展中发挥着积极的作用,推动了机器人技术的发展和应用,为社会带来了更多的便利和效益,

废话不多说,直接上教程!

一、gitee下载ORB_SLAM3源码

本次教程运行的是非ROS版本的ORB_SLAM3,所需的环境如下:
Ubuntu18.04、Opencv4.5.2
Pangolin0.6、 Boost库1.77.0版本、Eigen3.3.4

ORB_SLAM3的源码下载

下载网址:https://github.com/UZ-SLAMLab/ORB_SLAM3

推荐安装v0.4-beta(相对问题比较少,master/1.0的版本看最后的踩坑记录,不过都跑成功了,泪目呜呜呜!!!!)
以下的教程使用的是v0.4-beta版本的ORB_SLAM源码进行编译安装

1. gitee导入gitHub仓库

在没有科学上网的情况下,window、ubuntu上直接在gitHub官网下载压缩包很慢很慢,甚至下载的压缩包有问题,可能会出现解压失败的情况,下面是使用gitee进行下载的具体流程:

(1)注册gitee账号
按照流程填写信息注册即可:

官网网址:https://gitee.com/

(2)gitee导入gitHub仓库
登录gitee——点击+号——从GitHub导入:

在这里插入图片描述

点击从URL导入——复制GitHub网址粘贴上去——从gitee仓库下载即可:

在这里插入图片描述

二、安装支持C++特性依赖

终端输入:

sudo apt-get install gcc
sudo apt-get install g++
sudo apt-get install build-essential
sudo apt-get install cmake
sudo apt-get install git

三、安装Pangolin

1. 安装Pangolin的依赖

sudo apt<
### 关于 ORB_SLAM1 的资源 ORB-SLAM系列算法由西班牙马德里自治大学(T.U. Madrid)的Raúl Mur-Artal和Juan D. Tardós等人提出并持续改进。对于ORB_SLAM1的具体资料,虽然目前更多关注集中在后续版本ORB-SLAM2和ORB-SLAM3上,但仍有一些有价值的参考资料可以帮助理解这一早期版本。 #### 源码解析 针对ORB_SLAM1的源码解析相对较少,因为社区焦点已转向更新迭代后的版本。不过,在一些学术论坛和个人技术博客中仍能找到部分开发者分享的经验心得[^1]。这些文章通常会深入探讨核心模块的工作原理及其背后的数学基础,比如如何利用ORB特征点进行匹配、跟踪以及构建地图等过程[^4]。 #### 使用教程 尽管官方文档可能不再维护,网络上依然存在不少基于ORB_SLAM1教学材料。这类指南往往涵盖了从环境配置到实际案例演示等多个方面,帮助新手快速入门。值得注意的是,由于不同操作系统间可能存在兼容性差异,因此建议参照具体平台下的安装说明执行操作[^3]。 #### 相关论文 原始研究团队发表了一系列高质量的研究成果来阐述ORB_SLAM的设计理念和技术细节。其中最具代表性的当属《ORB-SLAM:A Versatile and Accurate Monocular SLAM System》这篇论文,它不仅全面介绍了整个系统的架构特点,还提供了详尽实验数据验证其性能优势。 ```python # 示例代码片段展示ORB特征检测函数调用方式 def extract_orb_features(image): orb = cv2.ORB_create() keypoints, descriptors = orb.detectAndCompute(image, None) return keypoints, descriptors ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啥也不会的研究僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值