基于Hadoop的国产电影数据分析与可视化 计算机毕设选题推荐 毕设带做 计算机毕设文档一条龙服务 可适用于毕业设计 课程设计 项目实战 附源码+安装部署+文档指导

🚀🚀新河代码客
🚀🚀个人介绍:专业于Java、Python等编程语言,精通大数据分析、小程序开发、安卓应用设计、深度学习研究、网络爬虫技术、网站建设、Golang编程以及大屏展示项目。
🚀🚀提供开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🚀🚀有任何技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🚀🚀更多交流,欢迎访问博主的主页个人空间。
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目

⚡⚡文末获取源码

国产电影数据分析与可视化-研究背景

近年来,随着互联网技术的飞速发展和普及,电影行业也迎来了数字化转型的浪潮。电影票房数据作为反映电影市场的重要指标,其规模日益庞大且复杂。传统的数据统计和分析方法已难以满足对海量数据进行高效处理和深度挖掘的需求。因此,如何利用先进的信息技术手段,对电影票房数据进行有效的采集、存储、处理和分析,成为了电影行业和相关研究领域的迫切需求。基于此,本课题“基于Python的电影票房数据分析系统”应运而生。 本课题的研究价值在于:理论意义方面,本课题将丰富电影票房数据分析的理论体系,探索利用Python进行数据处理和分析的新方法,为相关领域的研究提供新的思路和借鉴。实际意义方面,本系统可以为电影从业者、投资者、研究者等提供全面、准确、实时的电影票房数据支持,帮助他们更好地了解市场动态,制定合理的决策,从而促进电影产业的健康发展。同时,本系统也为广大电影爱好者提供了一个了解电影市场、追踪电影票房的便捷平台。

国产电影数据分析与可视化-技术

开发语言:Java或Python
数据库:MySQL
系统架构:B/S
后端框架:SSM/SpringBoot(Spring+SpringMVC+Mybatis)+Django
前端:Vue+ElementUI+HTML+CSS+JavaScript+jQuery+Echarts

国产电影数据分析与可视化-视频展示

基于Hadoop的国产电影数据分析与可视化 计算机毕设选题推荐 毕设带做 计算机毕设文档一条龙服务 可适用于毕业设计 课程设计 项目实战 附源码+安装部署+文档

国产电影数据分析与可视化-图片展示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

国产电影数据分析与可视化-代码展示

import requests
from bs4 import BeautifulSoup

def fetch_movie_data(url):
    """从指定URL采集电影票房数据"""
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    # 假设数据在某个标签中,具体根据实际情况调整
    movie_data = soup.find_all('div', class_='movie-data')
    return movie_data

# 示例URL,实际使用时需替换为真实数据源
url = 'http://example.com/movie-data'
movie_data = fetch_movie_data(url)
import pandas as pd

def process_movie_data(movie_data):
    """处理采集到的电影票房数据,转换为DataFrame"""
    data_list = []
    for data in movie_data:
        # 假设数据包含电影名、票房等字段,具体根据实际情况调整
        movie_name = data.find('h1').text
        box_office = data.find('span', class_='box-office').text
        data_list.append({'电影名': movie_name, '票房': box_office})
    
    df = pd.DataFrame(data_list)
    return df

df = process_movie_data(movie_data)
def analyze_movie_data(df):
    """对电影票房数据进行基本分析,例如计算总票房、平均票房等"""
    total_box_office = df['票房'].sum()
    average_box_office = df['票房'].mean()
    return total_box_office, average_box_office

total_box_office, average_box_office = analyze_movie_data(df)
import sqlite3

def store_movie_data(df, db_path='movie_data.db'):
    """将处理后的电影票房数据存储到SQLite数据库"""
    conn = sqlite3.connect(db_path)
    df.to_sql('movie_data', conn, if_exists='replace', index=False)
    conn.close()

store_movie_data(df)
from flask import Flask, jsonify

app = Flask(__name__)

@app.route('/api/movie-data', methods=['GET'])
def get_movie_data():
    """提供API接口,返回电影票房数据"""
    df = pd.read_sql('select * from movie_data', sqlite3.connect('movie_data.db'))
    data = df.to_dict(orient='records')
    return jsonify(data)

if __name__ == '__main__':
    app.run(debug=True)

国产电影数据分析与可视化-结语

基于Hadoop的国产电影数据分析与可视化 计算机毕设选题推荐 毕设带做 计算机毕设文档一条龙服务 可适用于毕业设计 课程设计 项目实战 附源码+安装部署+文档
如果你对这个项目感兴趣,或者有其它需求和建议,欢迎在作者主页上↑私信联系作者!

🌟🌟新河代码客
Java实战 | SpringBoot/SSM
Python实战项目 | Django
微信小程序/安卓实战项目
大数据实战项目
🌟🌟博主热衷于Java、Python、大数据、小程序、安卓、深度学习、爬虫、网站、Golang、大屏等实战项目。
🌟🌟提供专业开发、定制、代做、设计和文档指导服务,助您轻松解决技术难题!
🌟🌟有任何宝贵意见、技术问题或需求,欢迎在评论区交流。感谢大家的点赞、收藏和关注!
🌟🌟更多交流,欢迎访问博主的主页个人空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值