一、级数的性质
常数项级数记为 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an,每一项都是非负的称为正项级数,每一项与前后项正负性交错排布的叫做交错级数。交错级数可以表示为 ∑ n = 1 ∞ ( − 1 ) n u n \sum_{n=1}^{\infty} (-1)^n u_n ∑n=1∞(−1)nun,其中 u n u_n un必须为正。
基本的级数模型有等比级数(几何级数)、调和级数、p级数。
等比级数(几何级数)
形式: ∑ n = 1 ∞ a q n − 1 = a + a q + a q 2 + ⋯ + a q n − 1 + … (常数 a ≠ 0 ) \sum_{n=1}^{\infty} a q^{n-1} = a + aq + aq^2 +\dots +aq^{n-1} + \dots(常数a \neq 0) ∑n=1∞aqn−1=a+aq+aq2+⋯+aqn−1+…(常数a=0)
敛散性: { ∣ q ∣ < 1 ,收敛到 a 1 − q ∣ q ∣ ≥ 1 ,发散 \left\{ \begin{array}{c} \left| q \right| < 1,收敛到 \frac{a}{1-q} \\ \left| q \right| \geq 1,发散 \end{array} \right. {∣q∣<1,收敛到1−qa∣q∣≥1,发散
调和级数(p级数的一个特例)
形式: ∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + ⋯ + 1 n + … \sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} +\dots +\frac{1}{n} + \dots ∑n=1∞n1=1+21+31+⋯+n1+…
敛散性:发散
p级数
形式: ∑ n = 1 ∞ 1 n p = 1 + 1 2 p + 1 3 p + ⋯ + 1 n p + … \sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} +\dots +\frac{1}{n^p} + \dots ∑n=1∞np1=1+2p1+3p1+⋯+np1+…
敛散性: { p > 1 ,收敛 q ≤ 1 ,发散 \left\{ \begin{array}{c} p > 1,收敛 \\ q \leq 1,发散 \end{array} \right. {p>1,收敛q≤1,发散
级数具有以下性质:
1.在级数中去掉、增加、改变有限项,级数敛散性不变
2.线性性质:若级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an、 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn分别收敛于 s s s、 σ \sigma σ,则对于任意实数 λ \lambda λ、 μ \mu μ,级数 ∑ n = 1 ∞ ( λ a n + μ b n ) \sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) ∑n=1∞(λan+μbn)收敛于 λ s + μ σ \lambda s + \mu \sigma λs+μσ,即 ∑ n = 1 ∞ ( λ a n + μ b n ) = λ ∑ n = 1 ∞ a n + μ ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n ∑n=1∞(λan+μbn)=λ∑n=1∞an+μ∑n=1∞bn
3.对收敛级数的项任意加括号后所得的级数仍然收敛,且其和不变
逆否命题:如果加括号后所成的级数发散,则原级数发散
4.级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛 ⟹ \Longrightarrow ⟹ lim n → ∞ a n = 0 \lim_{n \rightarrow \infty} a_n = 0 limn→∞an=0
二、级数审敛法
正项级数审敛法
1.基本定理
级数收敛 ⟺ \Longleftrightarrow ⟺其 { S n } \{S_n\} {Sn}有界
2.比较审敛法
对于两个正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an和 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn,且自某项起有 a n ≤ b n a_n \leq b_n an≤bn,那么
(1) ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn收敛 ⟹ \Longrightarrow ⟹ ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛;
(2) ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an发散 ⟹ \Longrightarrow ⟹ ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn发散
3.比较审敛法的极限形式
对于两个正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an和 ∑ n = 1 ∞ b n ( b n ≠ 0 ) \sum_{n=1}^{\infty} b_n(b_n \neq 0) ∑n=1∞bn(bn=0),如果极限 lim n → ∞ a n b n = k \lim_{n \rightarrow \infty} \frac{a_n}{b_n} = k limn→∞bnan=k存在或者无穷大,那么
(1)当 0 < k < + ∞ 0 < k < + \infty 0<k<+∞时,两个级数同敛散;
(2) k = 0 k=0 k=0且 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn收敛 ⟹ \Longrightarrow ⟹ ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an收敛;
(3) k = + ∞ k=+ \infty k=+∞且 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty} b_n ∑n=1∞bn发散 ⟹ \Longrightarrow ⟹ ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an发散
4.比值审敛法,达朗贝尔判别法(检比法)
对于正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an,如果极限 lim n → ∞ a n + 1 a n = ρ \lim_{n \rightarrow \infty} \frac{a_{n+1}}{a_n} = \rho limn→∞anan+1=ρ存在或者无穷大,那么
(1) ρ < 1 \rho < 1 ρ<1 ⟹ \Longrightarrow ⟹收敛;
(2)当 ρ = 1 \rho = 1 ρ=1时,此法失效;
(3) 1 < ρ ≤ + ∞ 1 < \rho \leq + \infty 1<ρ≤+∞ ⟹ \Longrightarrow ⟹发散
5.根值审敛法,柯西判别法(根检法)
对于正项级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty} a_n ∑n=1∞an,如果极限 lim n → ∞ a n n = ρ \lim_{n \rightarrow \infty} \sqrt[n]{a_n} = \rho limn→∞nan=ρ存在或者无穷大,那么
(1) ρ < 1 \rho < 1 ρ<1 ⟹ \Longrightarrow ⟹收敛;
(2)当 ρ = 1 \rho = 1 ρ=1时,此法失效;
(3) 1 < ρ ≤ + ∞ 1 < \rho \leq + \infty 1<ρ≤+∞ ⟹ \Longrightarrow ⟹发散
交错级数审敛法
1.莱布尼茨审敛法
对于交错级数 ∑ n = 1 ∞ ( − 1 ) n u n ( u n > 0 ) \sum_{n=1}^{\infty} (-1)^n u_n(u_n > 0) ∑n=1∞(−1)nun(un>0),
{ { u n } 单调减少,即 u n + 1 ≤ u n ( n = 1 , 2 , … ) 一般项 u n 是无穷小量,即 lim n → ∞ u n = 0 \left\{ \begin{array}{c} \{u_n\}单调减少,即u_{n+1} \leq u_n(n=1,2,\dots) \\ 一般项u_n是无穷小量,即\lim_{n \rightarrow \infty} u_n =0 \end{array} \right. {{un}单调减少,即un+1≤un(n=1,2,…)一般项un是无穷小量,即limn→∞un=0 ⟹ \Longrightarrow ⟹收敛,且其和 s s s满足 0 ≤ s ≤ u 1 0 \leq s \leq u_1 0≤s≤u1,且其和 r n r_n rn满足 ∣ r n ∣ ≤ u n + 1 \left| r_n \right| \leq u_{n+1} ∣rn∣≤un+1