目录
文章前言
- 在计算机视觉领域,目标检测作为一项核心技术,旨在从图像或视频中自动识别出特定类别的对象,并同时定位这些对象的位置。随着深度学习技术的飞速发展,目标检测算法的性能得到了显著提升,其中Faster R-CNN(Faster Regions with Convolutional Neural Networks)无疑是这一领域的一个里程碑式成果。自其问世以来,Faster R-CNN凭借其高效、准确的特点,在学术研究和工业应用中均展现出了强大的生命力。
Faster R-CNN的简介
在Faster R-CNN这一里程碑式的目标检测算法出现之前,尽管诸如R-CNN和Fast R-CNN等前代算法已经在目标检测领域取得了显著的进展和性能提升,但它们仍然面临着计算效率低下这一难以忽视的瓶颈问题。这些算法在生成候选区域(Region Proposals),即可能包含目标物体的图像子区域时,普遍依赖于传统的图像处理方法,例如Selective Search算法。然而,这一传统方法不仅计算耗时较长,成为了整个检测流程中的性能瓶颈,而且其处理流程与后续的深度神经网络训练过程难以有效融合,从而限制了整体检测效率的提升。
为了解决这一关键问题,Faster R-CNN算法应运而生,它创新性地引入了一个名为区域建议网络(Region Proposal Network, RPN)的全新组件。RPN能够高效地生成候选区域,并且与检测网络共享卷积特征,这一设计不仅显著减少了候选区域生成所需的时间,还使得整个检测流程更加紧凑和高效。通过RPN的引入,Faster R-CNN实现了候选区域的快速生成,同时保证了检测精度的提升,从而极大地推动了目标检测算法的发展,为后续的研究和应用奠定了坚实的基础。
Faster RCNN的训练与测试
训练Faster R-CNN这一先进的目标检测算法,是一个涉及多个精密步骤的复杂过程,这些步骤涵盖了从特征提取网络的预训练,到区域建议网络(RPN)的专门训练,再到整个检测网络的联合优化训练。而在测试阶段,Faster R-CNN则展现出了其高效处理输入图像的能力,能够迅速且准确地生成高质量的候选区域,并对这些区域进行精确的分类和边界框定位,从而实现了对目标物体的有效检测。
本文旨在深入而全面地探讨Faster R-CNN的训练与测试过程,从数据集的准备与预处理,到网络架构的详细解析,包括特征提取网络、RPN以及检测头的设计细节;再到训练策略的制定,如学习率的调整、损失函数的优化以及训练过程中的正则化方法等;最后到测试阶段的评估方法,如精度、召回率以及交并比(IoU)等关键指标的计算与分析。通过这一全面而细致的解析,本文旨在揭示Faster R-CNN这一经典算法的工作原理,探讨其性能优化的多种途径,并为读者在目标检测任务中实际应用Faster R-CNN提供有力的理论支持和实践指导。通过本文的学习,读者将能够深入理解Faster R-CNN的精髓所在,掌握其在实际应用中的关键技术和方法。
提前准备
1.1 mobaxterm(远程连接服务器)
链接:https://mobaxterm.mobatek.net/download-home-edition.html
1.2 本文的源码下载
目标检测模型 Faster-Rcnn
2.1云服务器平台
第一步:创建实例,选择 4090 显卡,并且下载私钥
还提供了数据上传功能,用户有20GB免费存储空间,该空间被挂载到实例的/root/shared-storage目录,跨实例共享。首先点击文件存储,点击上传文件。
然后选择本机待上传的文件/文件夹,上传时尽量保持该界面首页显示,等待上传成功后再进行其他操作。
内置JupyterLab的使用
创建好实例后,可以看到平台提供了在线访问实例的JupyterLab入口,JupyterLab是一个交互式的开发环境,具有灵活而强大的用户界面。用户可以使用它编写 notebook、操作终端、编辑 markdown 文本、打开交互模式、查看 csv 文件及图片等。
点击进入JupyterLab后,通常情况下,左侧文件资源管理器与右侧控制台默认显示的是/root/workspace下的文件资源
服务器各个路径具体意义如下:
/:系统盘,替换镜像,重置系统时系统盘数据都会重置。
/root/workspace:数据盘,支持扩容,保存镜像时此处数据不会重置。
/root/shared-storage:共享文件存储,可跨实例存储。
其他步骤与JupyterLab的使用流程一致,推荐参考:
官网教程–Jupyter Lab官方文档【英文】:https://jupyterlab.readthedocs.io/en/latest/
优质博客–Jupyter Lab操作指南【中文】:https://blog.csdn.net/qq_44275213/article/details/139971514
本地连接使用DAMODEL实例
本章将演示说明如何在DAMODEL平台上找到实例的SSH访问信息,以及通过三种不同方法本地连接DAMODEL实例。
获取实例的SSH访问信息
首先需要进入DAMODEL控制台复制SSH的访问链接,获取主机host以及端口号:
复制SSH登录指令
ssh -p 31729 root@gpu-s277r6fyqd.ssh.damodel.com
- 用户名为root
- 主机host为gpu-s277r6fyqd.ssh.damodel.com
- 端口号为31729
- 将以上参数记录好,后续需要使用
通过SSH连接
- 首先打开cmd命令提示符,cd进入刚刚存下私钥的文件夹目录:
然后使用以下ssh命令连接服务器:
ssh -i <私钥文件名> -p <端口号> <用户名>@<host地址>
如果嫌每次需要载入密钥文件麻烦,可以将密钥设置为本地默认ssh密钥,首先编辑或创建~/.ssh/config文件(位于用户主目录下,Windows一般为C:\Users<你的用户名>.ssh\config)
并添加以下配置:
#Host {命名的服务器信息} #可以是任意值,仅在ssh生效,别名不限制。
#HostName {目标服务器IP}
#Port {目标服务器端口}
#User {目标服务器目标用户}
#IdentityFile {密钥文件的路径}
Host damodel1 #输入你想用的任意别名,使用空格分开
HostName gpu-s277r6fyqd.ssh.damodel.com #输入服务器Host
Port 31729 #输入服务器端口
User root
IdentityFile C:\Users\**\Desktop\ss\private_key.pem #输入密钥文件的路径
#注意结束加空行
之后,就可以直接在cmd输入ssh damodel1,直接完成服务器连接了。
通过MobaXterm连接
首先打开MobaXterm软件,点击左上方Session按钮创建一个新的Session,并选择通过SSH连接登录。
然后将刚刚记录的主机host填入R额模特host当中,端口号填入Port中,配置基础的SHH设置,然后点击下方Adavanced SSH settings选择高级SSH设置,勾选使用私钥登录,并将1.1中与实例绑定过的私钥导入其中。
点击ok后,即可看到成功创建了session,输入刚刚记录的用户名root,0即可连接0成功。
显示如下界面后,即连接成功,后续就可以正常通过MobaXterm连接使用服务器了。