
丹摩
文章平均质量分 94
醉熏的蚂蚁
这个作者很懒,什么都没留下…
展开
-
丹摩征文活动| 摩智算平台深度解析:Faster R-CNN模型的训练、测试与优化实践
在计算机视觉领域,目标检测作为一项核心技术,旨在从图像或视频中自动识别出特定类别的对象,并同时定位这些对象的位置。随着深度学习技术的飞速发展,目标检测算法的性能得到了显著提升,其中Faster R-CNN(Faster Regions with Convolutional Neural Networks)无疑是这一领域的一个里程碑式成果。自其问世以来,Faster R-CNN凭借其高效、准确的特点,在学术研究和工业应用中均展现出了强大的生命力。原创 2024-11-18 15:56:45 · 1095 阅读 · 16 评论 -
丹摩征文活动| ChatGLM-6B模型深度探索:从零开始的部署指南与实战应用全面解析
上传好预训练模型及解压后,我们就可以去启动 python 脚本运行了,ChatGLM-6B 提供了cli_demo.py和web_demo.pys两个文件来启动模型,第一个是使用命令行进行交互,第二个是使用本机服务器进行网页交互。对于正常的对话输入。依赖安装成功后,我们需要引入模型文件,比较方便的是,DAMODEL(丹摩智算)提供了数据上传功能,用户有 20GB 免费存储空间,该空间被挂载到实例的/root/shared-storage目录,跨实例共享。这里首先点击文件存储,点击上传文件。原创 2024-11-20 13:09:50 · 759 阅读 · 13 评论 -
丹摩征文活动| 丹摩智算平台下的YoloV8模型:全面指南——从训练到测试深度解析
自YOLO(You Only Look Once)模型问世以来,其简洁的设计理念和高效的目标检测能力便广受好评。YOLO系列模型通过一次卷积神经网络的前向传播,即可同时预测图像中多个物体的位置和类别,极大地提高了目标检测的速度和效率。随着技术的不断进步,YOLO模型也经历了多次迭代升级,每一次更新都带来了性能上的显著提升。YoloV8作为YOLO系列的最新力作,不仅继承了前代模型的高效性和实时性,还在网络架构、损失函数等方面进行了优化和改进,进一步提升了模型的检测精度和泛化能力。YoloV8-训练与测试。原创 2024-11-20 19:29:56 · 960 阅读 · 28 评论