📜九章数学体系开源项目一:底层支撑层——数学与计算基础设施搭建

🌟 注:文章具高度系统性!如果您不够理解或术语不通!请查阅之前文章!我的文章没有一篇是离开九章数学体系的!您可在评论区发表您的意见和看法!这是一个开源项目,希望您的参与和支持!
一、基础测度库集成
1.1 阿基米德体系
核心工具:复用SciPy的 scipy.integrate.quad 闭区间积分模块及MeasureTheory.jl的闭区间测度工具,聚焦一维闭区间 [a,b] 的测度计算,其测度值严格定义为 μ([a,b])=b-a 。
定义域约束:所有功能仅支持 a < b 的闭区间,通过内置校验工具强制拦截 a ≥ b 的无效输入,杜绝高维空间及开区间运算,遵循“以域限术”的构造原则。
应用适配:仅用于一维闭区间场景的积分计算(如 ∫[a,b]f(x)dx ),直接映射九章数学体系“闭区间对应有限范围”的理论,规避高维扩展带来的越界风险。
1.2 非阿基米德体系
🌟核心工具:封装SageMath的p-adic模块及padic包,实现闭球 B_r(c) 的Haar测度计算,测度值为 μ_p(B_p^k(c))=p^-k ,其中 p 为有限素数集内的素数, k 为正整数且对应闭球半径 r 。
🌟定义域绑定:通过工具函数将闭球半径与有限素数集严格关联,仅允许 r > 0 的一维闭球运算,删除高维空间相关功能,替换为同心闭球嵌套逻辑(即同一球心 c 、不同半径 r1 < r2 的闭球 B_r1(c) ⊂ B_r2(c) )。
避免越界:利用同心闭球的包含关系,确保所有测度计算均在一维闭球范围内进行,符合九章数学体系“闭球层级对应物理系统边界”的构造思想,且“不越界即正确”。
1.3 接口标准化
🌟阿基米德体系接口: get_archimedean_measure(interval) ,输入为闭区间 [a,b] ,输出测度值 b-a 及定义域标签 "闭区间[{},{}]" (填充 a,b ),内部调用闭区间积分工具包完成计算。
🌟非阿基米德体系接口: get_non_archimedean_measure(ball) ,输入为同心闭球 B_r(c) ,输出测度值 p^-k 及定义域标签 "闭球B_{}(c)" (填充 r ),仅依赖一维闭球的测度特性,无需处理高维转换。

二、测度论公理绑定
2.1 测度可加性
仅针对一维闭区间或同心闭球的不相交并集,实现测度叠加:若 [a,b] ∩ [c,d] = ∅ ,则 μ([a,b]∪[c,d])=μ([a,b])+μ([c,d]) ;若 B_r1(c) ∩ B_r2(c) = ∅ (仅当 r1 < r2 不成立,故实际通过同心嵌套避免相交),则通过半径层级自动确保测度叠加的合法性,直接映射九章数学体系G_α2公理。
2.2 平移不变性
💎 阿基米德体系: μ([a,b]+x)=μ([a+x,b+x])=b-a ,直接复用闭区间平移的数学特性,无需额外逻辑。
💎 非阿基米德体系: μ_p(B_r(c)+x)=μ_p(B_r(c+x)) ,通过同心闭球的球心平移实现,避免高维空间平移的复杂性,严格遵循九章数学体系“闭域平移即合法”的原则。
2.3 范数与拓扑
仅保留一维p-adic范数的超度量不等式( |x+y|_p ≤ max(|x|_p,|y|_p) ),用于同心闭球的半径约束(即 B_r1(c) ⊂ B_r2(c) 当且仅当 r1 ≤ r2 ),删除高维拓扑结构,对应九章数学体系G_α1、G_α4公理在一维的简化实现。

三、计算与存储系统
3.1 计算引擎
💎 完全基于一维闭区间和同心闭球的测度工具,实现积分运算(如 ∫[a,b]f(x)dx )及风险测度计算(如 VaR_α(X) ),通过定义域约束自动过滤高维场景的越界输入,确保“不越界即正确”。
3.2 分布式存储
💎 使用图数据库(Neo4j)存储一维闭区间/同心闭球与有限素数集的关联关系,测度空间以JSON Schema序列化时仅包含一维定义域信息(如 {"type":"interval","domain":[a,b]} 或 {"type":"ball","center":c,"radius":r} ),删除高维参数。
四、第一阶段实施细节(1-2个月)
4.1 核心任务
1. 封装工具:开发 RestrictedProduct 测度的一维适配函数,仅支持有限素数集与同心闭球半径的绑定,不涉及高维扩展。
2. 定义域校验:实现一维闭区间 [a,b] ( a < b )和同心闭球 B_r(c) ( r > 0 )的自动校验工具,拒绝任何高维或开域输入。
3. 测试用例:针对一维场景(如线段长度计算、一维积分)设计测试,验证“不越界即正确”,通过后进入下一阶段。

4.2 关键修正说明
💎 删除高维相关内容后,所有功能聚焦一维闭域的测度计算,完全符合九章数学体系“以域限术”的构造本源,避免因高维扩展导致的理论越界风险。
💎 同心闭球嵌套逻辑替代高维空间构造,仅通过半径动态调整实现精度控制,直接复用一维测度的数学特性,大幅降低开发复杂度。
此修正方案严格遵循九章数学体系“不越界即无悖论”的核心思想,通过限制一维场景和同心闭球构造,确保了第一阶段实施的理论严谨性与工程可行性,为后续阶段的桥接公式(𝔇₃)和状态寄存器开发奠定安全可控的基础。
九章数学体系:底层支撑层搭建

被折叠的 条评论
为什么被折叠?



