19. 最⼤⼦数组和(medium)
1. 题⽬链接:53. 最大子数组和 - 力扣(LeetCode)
2.. 解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以「某个位置为结尾」,结合「题⽬要求」,定义⼀个状态表⽰:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦数组」中和的最⼤和。
2. 状态转移⽅程:
dp[i] 的所有可能可以分为以下两种:
i. ⼦数组的⻓度为 1 :此时 dp[i] = nums[i] ;
ii. ⼦数组的⻓度⼤于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼤值再加上 nums[i] ,也就是 dp[i - 1] + nums[i] 。
由于我们要的是「最⼤值」,因此应该是两种情况下的最⼤值,因此可得转移⽅程:
dp[i] = max(nums[i], dp[i - 1] + nums[i]) 。
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = 0 即可。
4. 填表顺序:
根据「状态转移⽅程」易得,填表顺序为「从左往右」。
5. 返回值:
状态表⽰为「以 i 为结尾的所有⼦数组」的最⼤值,但是最⼤⼦数组和的结尾我们是不确定的。因此我们需要返回整个 dp 表中的最⼤值。
我记得之前在 leetcode 的题解上,看到⼀句⾮常骚的解释:
⾛完这⼀⽣:如果我和你在⼀起会变得更好,那我们就在⼀起,否则我就丢下你。我回顾我最光辉的时刻就是和不同⼈在⼀起,变得更好的最⻓连续时刻。😊😊
3.C++ 算法代码
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n=nums.size();
vector<int> dp(n+1);
int res=INT_MIN;
for(int i=1;i<=n;i++)
{
dp[i]=max(nums[i-1],dp[i-1]+nums[i-1]);
res=max(dp[i],res);
}
return res;
}
};
20. 环形⼦数组的最⼤和(medium)
1. 题⽬链接:918. 环形子数组的最大和 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
本题与「最⼤⼦数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:
i. 结果在数组的内部,包括整个数组;
ii. 结果在数组⾸尾相连的⼀部分上。
其中,对于第⼀种情况,我们仅需按照「最⼤⼦数组和」的求法就可以得到结果,记为 fmax 。
对于第⼆种情况,我们可以分析⼀下:
i. 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
ii. 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最⼩的;
因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中
gmin 表⽰数组内的「最⼩⼦数组和」。
两种情况下的最⼤值,就是我们要的结果。
但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第
⼆种情况下的 gmin == sum ,求的得结果就会是 0 。若直接求两者的最⼤值,就会是 0 。但
是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。
由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最
⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。
1. 状态表⽰:
g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。
2. 状态转移⽅程:
g[i] 的所有可能可以分为以下两种:
i. ⼦数组的⻓度为 1 :此时 g[i] = nums[i] ;
ii. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。
由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:
g[i] = min(nums[i], g[i - 1] + nums[i]) 。
3. 初始化:
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系。
在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。
4. 填表顺序:
根据状态转移⽅程易得,填表顺序为「从左往右」。
5. 返回值:
a. 先找到 f 表⾥⾯的最⼤值 -> fmax ;
b. 找到 g 表⾥⾯的最⼩值 -> gmin ;
c. 统计所有元素的和 -> sum ;
b. 返回 sum == gmin ? fmax : max(fmax, sum - gmin) 。
3.C++ 算法代码:
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
int n=nums.size();
vector<int> f(n+1);//中间最大
auto g=f;//中间最小,两边极为最大
int sum=0;
int fmax=INT_MIN;
int gmin=INT_MAX;
for(int i=1;i<=n;i++)
{
f[i]=max(nums[i-1],f[i-1]+nums[i-1]);
fmax=max(fmax,f[i]);
g[i]=min(nums[i-1],g[i-1]+nums[i-1]);
gmin=min(gmin,g[i]);
sum+=nums[i-1];
}
int res=(sum==gmin)?fmax:max(fmax,sum-gmin);
return res;
}
};
21. 乘积最⼤⼦数组(medium)
1. 题⽬链接:152. 乘积最大子数组 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
这道题与「最⼤⼦数组和」⾮常相似,我们可以效仿着定义⼀下状态表⽰以及状态转移:
i. dp[i] 表⽰以 i 为结尾的所有⼦数组的最⼤乘积,
ii. dp[i] = max(nums[i], dp[i - 1] * nums[i]) ;
由于正负号的存在,我们很容易就可以得到,这样求 dp[i] 的值是不正确的。因为 dp[i - 1] 的信息并不能让我们得到 dp[i] 的正确值。⽐如数组 [-2, 5, -2] ,⽤上述状态转移得到的 dp数组为 [-2, 5, -2] ,最⼤乘积为 5 。但是实际上的最⼤乘积应该是所有数相乘,结果为 20 。
究其原因,就是因为我们在求 dp[2] 的时候,因为 nums[2] 是⼀个负数,因此我们需要的是「 i - 1 位置结尾的最⼩的乘积 (-10) 」,这样⼀个负数乘以「最⼩值」,才会得到真实的
最⼤值。
因此,我们不仅需要⼀个「乘积最⼤值的 dp 表」,还需要⼀个「乘积最⼩值的 dp 表」。
1. 状态表⽰:
f[i] 表⽰:以 i 结尾的所有⼦数组的最⼤乘积,
g[i] 表⽰:以 i 结尾的所有⼦数组的最⼩乘积。
2. 状态转移⽅程:
遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。
对于 f[i] ,也就是「以 i 为结尾的所有⼦数组的最⼤乘积」,对于所有⼦数组,可以分为下
⾯三种形式:
i. ⼦数组的⻓度为 1 ,也就是 nums[i] ;
ii. ⼦数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;
iii. ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;
(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)
综上所述, f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i - 1]) )。
对于 g[i] ,也就是「以 i 为结尾的所有⼦数组的最⼩乘积」,对于所有⼦数组,可以分为下
3. 初始化:
可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要保证后续填表是正确的;
ii. 下标的映射关系。
在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 1 即可。
4. 填表顺序:
根据状态转移⽅程易得,填表顺序为「从左往右,两个表⼀起填」。
5. 返回值:
返回 f 表中的最⼤值。
3.C++ 算法代码:
class Solution {
public:
int maxProduct(vector<int>& nums) {
int n=nums.size();
vector<int> f(n+1),g(n+1);
f[0]=g[0]=1;
int res=INT_MIN;
for(int i=1;i<=n;i++)
{
f[i]=max(nums[i-1],max(f[i-1]*nums[i-1],g[i-1]*nums[i-1]));
g[i]=min(nums[i-1],min(f[i-1]*nums[i-1],g[i-1]*nums[i-1]));
res=max(res,f[i]);
}
return res;
}
};
22. 乘积为正数的最⻓⼦数组(medium)
1. 题⽬链接:1567. 乘积为正数的最长子数组长度 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
继续效仿「最⼤⼦数组和」中的状态表⽰,尝试解决这个问题。
状态表⽰: dp[i] 表⽰「所有以 i 结尾的⼦数组,乘积为正数的最⻓⼦数组的⻓度」。 思考状态转移:对于 i 位置上的 nums[i] ,我们可以分三种情况讨论:
i. 如果 nums[i] = 0 ,那么所有以 i 为结尾的⼦数组的乘积都不可能是正数,此时dp[i] = 0 ;
ii. 如果 nums[i] > 0 ,那么直接找到 dp[i - 1] 的值(这⾥请再读⼀遍 dp[i - 1] 代表的意义,并且考虑如果 dp[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可,此时 dp[i] = dp[i - 1] + 1 ;
iii. 如果 nums[i] < 0 ,这时候你该蛋疼了,因为在现有的条件下,你根本没办法得到此时的最⻓⻓度。因为乘法是存在「负负得正」的,单单靠⼀个 dp[i - 1] ,我们⽆法推导出 dp[i] 的值。
但是,如果我们知道「以 i - 1 为结尾的所有⼦数组,乘积为负数的最⻓⼦数组的⻓度」 neg[i - 1] ,那么此时的 dp[i] 是不是就等于 neg[i - 1] + 1 呢?
通过上⾯的分析,我们可以得出,需要两个 dp 表,才能推导出最终的结果。不仅需要⼀个「乘积
为正数的最⻓⼦数组」,还需要⼀个「乘积为负数的最⻓⼦数组」。
1. 状态表⽰:
f[i] 表⽰:以 i 结尾的所有⼦数组中,乘积为「正数」的最⻓⼦数组的⻓度;
g[i] 表⽰:以 i 结尾的所有⼦数组中,乘积为「负数」的最⻓⼦数组的⻓度。
2. 状态转移⽅程:
遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。
对于 f[i] ,也就是以 i 为结尾的乘积为「正数」的最⻓⼦数组,根据 nums[i] 的值,可以分为三种情况:
i. nums[i] = 0 时,所有以 i 为结尾的⼦数组的乘积都不可能是正数,此时 f[i] =0 ;
ii. nums[i] > 0 时,那么直接找到 f[i - 1] 的值(这⾥请再读⼀遍 f[i - 1] 代表的意义,并且考虑如果 f[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可,此时 f[i] = f[i - 1] + 1 ;
iii. nums[i] < 0 时,此时我们要看 g[i - 1] 的值(这⾥请再读⼀遍 g[i - 1] 代表的意义。因为负负得正,如果我们知道以 i - 1 为结尾的乘积为负数的最⻓⼦数组的⻓度,加上 1 即可),根据 g[i - 1] 的值,⼜要分两种情况:
1. g[i - 1] = 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是不存在的,⼜
因为 nums[i] < 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组也是不存在的,此时 f[i] = 0 ;
2. g[i - 1] != 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是存在的,⼜因为 nums[i] < 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组就等于 g[i - 1] + 1 ;
综上所述, nums[i] < 0 时, f[i] = g[i - 1] == 0 ? 0 : g[i - 1] +
1;对于 g[i] ,也就是以 i 为结尾的乘积为「负数」的最⻓⼦数组,根据 nums[i] 的值,可以
分为三种情况:
i. nums[i] = 0 时,所有以 i 为结尾的⼦数组的乘积都不可能是负数,此时 g[i] =0 ;
ii. nums[i] < 0 时,那么直接找到 f[i - 1] 的值(这⾥请再读⼀遍 f[i - 1] 代表的意义,并且考虑如果 f[i - 1] 的结值是 0 的话,影不影响结果),然后加⼀即可(因为正数 * 负数 = 负数),此时 g[i] = f[i - 1] + 1 ;
iii. nums[i] > 0 时,此时我们要看 g[i - 1] 的值(这⾥请再读⼀遍 g[i - 1] 代表的意义。因为正数 * 负数 = 负数),根据 g[i - 1] 的值,⼜要分两种情况:
1. g[i - 1] = 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是不存在的,⼜
因为 nums[i] > 0 ,所以以 i 结尾的乘积为负数的最⻓⼦数组也是不存在的,此时 f[i] = 0 ;
2. g[i - 1] != 0 ,说明以 i - 1 为结尾的乘积为负数的最⻓⼦数组是存在的,⼜因为 nums[i] > 0 ,所以以 i 结尾的乘积为正数的最⻓⼦数组就等于 g[i - 1] + 1 ;
综上所述, nums[i] > 0 时, g[i] = g[i - 1] == 0 ? 0 : g[i - 1] + 1 ;
这⾥的推导⽐较绕,因为不断的出现「正数和负数」的分情况讨论,我们只需根据下⾯的规则,严
格找到此状态下需要的 dp 数组即可:
i. 正数 * 正数 = 正数
ii. 负数 * 负数 = 正数
iii. 负数 * 正数 = 正数 * 负数 = 负数
3. 初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 0 即可。
4. 填表顺序:
根据「状态转移⽅程」易得,填表顺序为「从左往右,两个表⼀起填」。
5. 返回值:
根据「状态表⽰」,我们要返回 f 表中的最⼤值。
3.C++ 算法代码:
class Solution {
public:
int getMaxLen(vector<int>& nums) {
int n=nums.size();
vector<int> f(n+1),g(n+1);
int ret=INT_MIN;;
for(int i=1;i<=n;i++)
{
if(nums[i-1]>0)
{
f[i]=f[i-1]+1;
g[i]=(g[i-1]==0)?0:g[i-1]+1;
}
else if(nums[i-1]<0)
{
f[i]=(g[i-1]==0)?0:g[i-1]+1;
g[i]=f[i-1]+1;
}
else
{
f[i]=0;
g[i]=0;
}
ret=max(ret,f[i]);
}
return ret;
}
};
23. 等差数列划分(medium)
1. 题⽬链接:413. 等差数列划分 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
1. 状态表⽰:
由于我们的研究对象是「⼀段连续的区间」,如果我们状态表⽰定义成 [0, i] 区间内⼀共有多少等差数列,那么我们在分析 dp[i] 的状态转移时,会⽆从下⼿,因为我们不清楚前⾯那么多
的「等差数列都在什么位置」。所以说,我们定义的状态表⽰必须让等差数列「有迹可循」,让状态转移的时候能找到「⼤部队」。因此,我们可以「固定死等差数列的结尾」,定义下⾯的状态表⽰:
dp[i] 表⽰必须「以 i 位置的元素为结尾」的等差数列有多少种。
2. 状态转移⽅程:
我们需要了解⼀下等差数列的性质:如果 a b c 三个数成等差数列,这时候来了⼀个 d ,其中 b c d 也能构成⼀个等差数列,那么 a b c d 四个数能够成等差序列吗?答案是:显然
的。因为他们之间相邻两个元素之间的差值都是⼀样的。有了这个理解,我们就可以转⽽分析我们的状态转移⽅程了。
对于 dp[i] 位置的元素 nums[i] ,会与前⾯的两个元素有下⾯两种情况:
i. nums[i - 2], nums[i - 1], nums[i] 三个元素不能构成等差数列:那么以nums[i] 为结尾的等差数列就不存在,此时 dp[i] = 0 ;
ii. nums[i - 2], nums[i - 1], nums[i] 三个元素可以构成等差数列:那么以nums[i - 1] 为结尾的所有等差数列后⾯填上⼀个 nums[i] 也是⼀个等差数列,此时dp[i] = dp[i - 1] 。但是,因为 nums[i - 2], nums[i - 1], nums[i] 三者⼜能构成⼀个新的等差数列,因此要在之前的基础上再添上⼀个等差数列,于是 dp[i] = dp[i - 1] + 1 。
综上所述:状态转移⽅程为:
当: nums[i - 2] + nums[i] != 2 * nums[i - 1] 时, dp[i] = 0
当: nums[i - 2] + nums[i] == 2 * nums[i - 1] 时, dp[i] = 1 + dp[i -1]
3. 初始化:
由于需要⽤到前两个位置的元素,但是前两个位置的元素⼜⽆法构成等差数列,因此 dp[0] =dp[1] = 0 。
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
因为我们要的是所有的等差数列的个数,因此需要返回整个 dp 表⾥⾯的元素之和。
3.C++ 算法代码:
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& nums) {
int n=nums.size();
vector<int> dp(n);
int sum=0;
for(int i=2;i<n;i++)
{
dp[i]=(nums[i]-nums[i-1]==nums[i-1]-nums[i-2])?dp[i-1]+1:0;
sum+=dp[i];
}
return sum;
}
};
24. 最⻓湍流⼦数组(medium)
1. 题⽬链接:978. 最长湍流子数组 - 力扣(LeetCode)
2. 解法(动态规划):
算法思路:
1. 状态表⽰:
我们先尝试定义状态表⽰为:
dp[i] 表⽰「以 i 位置为结尾的最⻓湍流数组的⻓度」。
但是,问题来了,如果状态表⽰这样定义的话,以 i 位置为结尾的最⻓湍流数组的⻓度我们没法
从之前的状态推导出来。因为我们不知道前⼀个最⻓湍流数组的结尾处是递增的,还是递减的。因此,我们需要状态表⽰能表⽰多⼀点的信息:要能让我们知道这⼀个最⻓湍流数组的结尾是「递增」的还是「递减」的。
因此需要两个 dp 表:
f[i] 表⽰:以 i 位置元素为结尾的所有⼦数组中,最后呈现「上升状态」下的最⻓湍流数
组的⻓度;
g[i] 表⽰:以 i 位置元素为结尾的所有⼦数组中,最后呈现「下降状态」下的最⻓湍流数组的⻓度。
2. 状态转移⽅程:
对于 i 位置的元素 arr[i] ,有下⾯两种情况:
i. arr[i] > arr[i - 1] :如果 i 位置的元素⽐ i - 1 位置的元素⼤,说明接下来
应该去找 i -1 位置结尾,并且 i - 1 位置元素⽐前⼀个元素⼩的序列,那就是 g[i- 1] 。更新 f[i] 位置的值: f[i] = g[i - 1] + 1 ;
ii. arr[i] < arr[i - 1] :如果 i 位置的元素⽐ i - 1 位置的元素⼩,说明接下来应该去找 i - 1 位置结尾,并且 i - 1 位置元素⽐前⼀个元素⼤的序列,那就是 f[i - 1] 。更新 g[i] 位置的值: g[i] = f[i - 1] + 1;
iii. arr[i] == arr[i - 1] :不构成湍流数组。
3. 初始化:
所有的元素「单独」都能构成⼀个湍流数组,因此可以将 dp 表内所有元素初始化为 1 。
由于⽤到前⾯的状态,因此我们循环的时候从第⼆个位置开始即可。
4. 填表顺序:
毫⽆疑问是「从左往右,两个表⼀起填」。
5. 返回值:
应该返回「两个 dp 表⾥⾯的最⼤值」,我们可以在填表的时候,顺便更新⼀个最⼤值。
3.C++ 算法代码:
class Solution {
public:
int maxTurbulenceSize(vector<int>& arr) {
int n=arr.size();
vector<int> dp(n,1);
int ret=1;
if(n>=2&&arr[0]!=arr[1])
{
dp[1]=2;
ret=max(ret,dp[1]);
}
for(int i=2;i<n;i++)
{
if(arr[i]>arr[i-1]&&arr[i-1]<arr[i-2])
{
dp[i]=dp[i-1]+1;
}
else if(arr[i]<arr[i-1]&&arr[i-1]>arr[i-2])
{
dp[i]=dp[i-1]+1;
}
else if(arr[i]!=arr[i-1])
{
dp[i]=2;
}
ret=max(ret,dp[i]);
}
return ret;
}
};