2. 解析库
(1)BeautifulSoup:一个HTML和XML的解析库,简单易用,支持多种解析器。
(2)lxml:一个高效的XML和HTML解析库,支持XPath和CSS选择器。
(3)PyQuery:一个Python版的jQuery,语法与jQuery类似,易于上手。
3. 存储库
(1)pandas:一个强大的数据分析库,提供数据结构和数据分析工具,支持多种文件格式。
(2)SQLite:一个轻量级的数据库,支持SQL查询,适用于小型爬虫项目。
三、编写一个简单的Python爬虫
以爬取豆瓣电影TOP250为例,讲解如何编写一个简单的Python爬虫。
- 设计爬虫需求
爬取豆瓣电影TOP250的电影名称、评分、导演等信息。 - 编写代码
(1)使用requests库发送HTTP请求,获取网页源代码。
(2)使用BeautifulSoup库解析网页内容,提取所需数据。
(3)使用pandas库存储数据,并保存为CSV文件。 - 运行爬虫并展示结果
import requests
from bs4 import BeautifulSoup
import pandas as pd
# 豆瓣电影TOP250的基础URL
base_url = 'https://movie.douban.com/top250'
# 定义一个函数来获取页面内容
def get\_page\_content(url):
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
response = requests.get(url, headers=headers)
if response.status_code == 200:
return response.text
else:
print('请求页面失败:', response.status_code)
return None
# 定义一个函数来解析页面内容
def parse\_page\_content(html):
soup = BeautifulSoup(html, 'html.parser')
movie_list = soup.find_all('div&

本文详细介绍了Python爬虫的解析库如BeautifulSoup、lxml和PyQuery,以及存储库如pandas和SQLite的使用。通过实例演示了如何编写简单的爬虫,包括爬取豆瓣电影TOP250和招聘网站职位信息。强调了爬虫注意事项,如遵守Robots协议、设置请求间隔和处理反爬机制。最后分享了一套全面的Python开发学习资源。
最低0.47元/天 解锁文章
1036

被折叠的 条评论
为什么被折叠?



