字节试水一面连环50问 以为要凉凉?多靠这份“Java复习宝典”一一攻克

最后

还有Java核心知识点+全套架构师学习资料和视频+一线大厂面试宝典+面试简历模板可以领取+阿里美团网易腾讯小米爱奇艺快手哔哩哔哩面试题+Spring源码合集+Java架构实战电子书+2021年最新大厂面试题。
在这里插入图片描述

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

主要突出重难点,我bb了一堆业务逻辑结果人家都不感兴趣

3. SpringAOP实现

JDK动态代理:实现Invocationhandler接口,本质上是new一个继承了所有类上Interface的Proxy对象,然后通过method.invoke进行调用 CGLib动态代理:在内存中动态生成子类对原对象进行代理,无法代理final类以及方法 共同限制:无法代理到当前class当中this引用的嵌套方法

4. AOP用的哪种?

  • 默认用的JDK动态代理

5. JDK动态代理以及CGLib动态代理性能比较

  • JDK走的反射,会多一些反射调用的开销(方法权限验证、调用开销等)

  • CGLib需要创建新对象,在创建新对象上,即初始化时会多一些开销

6. Java的线程池用过吗,具体参数讲一下

Java的线程池是一个三级存储结构,线程先放入核心线程池,满了之后放到缓存队列当中,最后如果缓存队列也满了则扩容新线程,所以参数有: 核心线程数量 缓存队列类型 最大线程数量 线程活跃时间 线程工厂方法(写日志、重命名线程等)

7. 线程池的Execute和Submit区别

Execute执行runnable,Submit可以执行Future,我们一般用countDownLatch+Future来获取所有的线程结果

8. 继续问,还有别的区别吗?

不知道了,后续查了发现区别如下 Execute会在运行期直接抛出异常,Submit之后在调用Future.get的时候才会抛出异常

9. 线程池如何保证当前线程获取池内的worker的时候不产生争用

volatile的state标志这个worker有没有被使用

10. volatile的特性

通过禁止指令重排序来保证内存可见性,实际使用内存屏障实现的

11. 内存屏障分几种?

当时记不得了,回头查了一下如下: LoadLoad屏障:对于这样的语句Load1; LoadLoad; Load2,在Load2及后续读取操作要读取的数据被访问前,保证Load1要读取的数据被读取完毕。 StoreStore屏障:对于这样的语句Store1; StoreStore; Store2,在Store2及后续写入操作执行前,保证Store1的写入操作对其它处理器可见。 LoadStore屏障:对于这样的语句Load1; LoadStore; Store2,在Store2及后续写入操作被刷出前,保证Load1要读取的数据被读取完毕。 StoreLoad屏障:对于这样的语句Store1; StoreLoad; Load2,在Load2及后续所有读取操作执行前,保证Store1的写入对所有处理器可见。它的开销是四种屏障中最大的。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其它三种内存屏障的功能。

12. 除了在volatile当中使用了内存屏障,JAVA还有哪里使用了内存屏障

这个真不知道,知道的小伙伴请在评论区指点一二

13. 你之前讲到了CountDownLatch,你知道它的内部实现吗

知道,用的AQS,在state=0的时候才允许所有等待的线程全部通过

14. 简单讲一下AQS

AQS核心设计: 一个volatile int state的状态值,使用volatile保证线程可见性,使用int来提供可重入的多资源能力 双向队列,首节点为执行节点,可以根据执行节点的Node信息判断是ShareLock还是ExclusiveLock,会关联一个执行线程,来提供可重入的判断 加锁的时候若是公平锁则尝试CAS载入队列,若是非公平锁则直接入队列 解锁的时候直接唤醒后继的第一个wait节点

15. 加锁之后AQS是如何响应中断的?

太细节了真不会,之前复习源码没看这么深(结束之后补漏洞)

16. OK问点别的,AQS存在什么实现呢?

用过的ReentranceLock、CountDownLatch

17. 讲讲实现

ReentranceLock通过判断线程是否相同进行冲入 CountDownLatch在state为0的时候才让所有的await通过

18. 听说过ReadWriteLock吗,你之前提到AQS当中只有一个State那你如何用一个State去支撑读写两种状态

一个state是Int,可以分高位给Read,低位给Write,就当个String用了

19. Int几个字节

我居然回答了32个,应该是32位,8位一个byte,共计四个byte

20. 你们用过缓存吗

没有,但是用redis做了分布式锁

21. 你说说下分布式锁怎么做的?

分布式锁也是一个锁,需要满足几个特性,1 可重入 2 可以识别加锁的身份防止ABA问题 3 考虑是否需要续约 key是所需要加上的锁的业务资源唯一编码,value是当前线程的uuid,uuid存在threadLocal内 加锁的时候用的jedis,先设一个过期时间,然后用ex,若不存在key则添加新key,若已经存在则直接失败 解锁用的阿里云企业版的CAD(compareAndDelete),原子比较并解锁,本质是通过lua脚本进行的类似事务操作

22. 除了redis还有什么可以做分布式锁?

Mysql、zookeeper等

23. 如果让你用Mysql做分布式锁你怎么做

新建一张表,主键为需要锁的锁key,col1为线程uuid,col2为ttl时间 加锁的时候在一个事务中选取当前key的record,若存在则判断ttl,若不存在则直接可以插入 解锁的时候直接把record删除即可 起一个定时任务来遍历表,清楚过期键防止无限膨胀

24. zookeeper了解吗

一点点,摄入不深

25. 那我们继续聊聊Redis吧,Redis有什么数据结构?

List,Hash,Set,Zset,List

26. Zset怎么实现的?

跳表+map实现

27. 什么是跳表?

常规链表只有一个next节点,跳表持有多个指向其他链表的指针,可以跨越式的进行查找,时间复杂度是logn

28. 如果我要找一个score为A的节点应该如何去找?

首先在map中找到对应的node排名,然后根据排名在skiplist中进行查找

29. zrange是如何实现的?

这个没想到不应该,查了一下如下: ZRANGE key start stop [WITHSCORES],zrange 就是返回有序集 key 中,指定区间内的成员,而跳表中的元素最下面的一层是有序的(上面的几层就是跳表的索引),按照分数排序,我们只要找出 start 代表的元素,然后向前或者向后遍历 M 次拉出所有数据即可,而找出 start 代表的元素,其实就是在跳表中找一个元素的时间复杂度。跳表中每个节点每一层都会保存到下一个节点的跨度,在寻找过程中可以根据跨度和来求当前的排名,所以查找过程是 O(log(N) 过程,加上遍历 M 个元素,就是 O(log(N)+M),所以 redis 的 zrange 不会像 mysql 的 offset 有比较严重的性能问题。

30. Redis持久化

RDB:快照存储,可以选择是否阻塞,使用场景在数据库上下线、主备复制等情况中 AOF:类似于binlog,每个里面都是一个写事件,是优先读取的策略,支持多策略写入(强同步、按时间刷盘、交由操作系统决定刷盘等),AOF为了防止文件膨胀也支持重写

31. AOF重写的时候会不会block主线程?

不会,没有这个必要,起一个子线程重写完毕之后把手头的buffer在刷进去就行了

32. 在载入的时候是怎么做的

本地起一个client直接读取AOF重放其中的命令

33. Redis有哪些多机部署方案?

经典的主备同步,通过RDB初始化备库然后进行命令传播 Sentinel,实际上是一种容灾机制 cluster,集群部署,使用多机占用slot的方式进行集群服务提供

34. 在主备环境下,如果一个备库中途断链了,重新上线的时候怎么执行同步?

主备各自维护一个写入的Offset,对比差异之后在buffer中读出丢失的命令并进行同步

35. 如果备库的offset过于落后已经不在buffer当中了呢?

直接RDB重新同步 使用AOF来查找对应offset的语句(这个是我猜的)

36. cluster如何做的故障转移?

不知道,估计也是检测到客观下线然后paxos选主

37. Mysql了解吗,里面有哪些锁?

类型分类:共享锁(S),独占锁(X),意向锁(与表锁互斥) 粒度分类:行锁、表锁

38. 行锁怎么实现的?

不知道,这个时候已经有点崩溃了,怎么这么多不知道nnd

39. 讲一下事务隔离级别吧

RU、RC、RR、Serializable

40. 你们用的是哪个隔离级别

mysql默认的是RR,我们改成RC了

41. 在默认隔离级别下会产生幻读问题吗?

会,这是幻读是RR的经典问题之一

42. 描述一下幻读

在T1里Select * From table where id = 1;若不存在该记录则insert id = 1的记录进去,但是在select完毕之后T2事务插入了id=1的record,此时后续insert执行失败,本质上来讲是当前的快照都不支持后续dml语句的执行

43. MVCC机制了解吗?

了解,由undolog支撑的数据隔离机制,主要是为了提供更高的并发度

44. 讲一下原理

每一行record都存在两个隐藏行,一个是当前的事务id,一个是指向undolog的指针 mvcc机制运行 在rr和rc两个隔离级别下 在每次生成ReadView的时候,会将当前的活跃事务ID维护在列表当中,如果访问的Record的ID比最小活跃事务的ID还要小说明之前已经提交了,可以直接读取,如果与最大事务ID还要大就证明该事务在这个快照时没提交,需要根据undolog去找对应的历史版本,如果在最大和最小之间,那么若其为活跃事务则找历史版本,若不是则直接读取 在RC级别下,每次Select都生成新的ReadView,所以能看到不同事物间的提交 在RR级别下,只在第一次Select的时候生成ReadView,所以会产生幻读,因为快照读和真实读的结果不一致

45. 慢sql怎么处理?

捞慢sql日志先分析写的索引是不是有问题或者offset太大了,然后看expain

46. 你关注explain的那些col?

key:真实用到的索引 possible_key:可能用的索引 rows:扫描行数,越大越拉垮 filter:过滤数据比例,这个col可以验证索引有效性 extra:包含是否使用索引、sort是否时filesort等

47. https了解吗?

client发一个随机数给server server发证书+随机数回来 client拆证书找第三方验证证书有效性,取出公钥 client拿公钥加密第三个随机数发server server私钥解密

48. 线上机器cpu100%你怎么处理?

总结

大型分布式系统犹如一个生命,系统中各个服务犹如骨骼,其中的数据犹如血液,而Kafka犹如经络,串联整个系统。这份Kafka源码笔记通过大量的设计图展示、代码分析、示例分享,把Kafka的实现脉络展示在读者面前,帮助读者更好地研读Kafka代码。

麻烦帮忙转发一下这篇文章+关注我

就这一次!拼多多内部架构师培训Kafka源码笔记(现已绝版)

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

务犹如骨骼,其中的数据犹如血液,而Kafka犹如经络,串联整个系统。这份Kafka源码笔记通过大量的设计图展示、代码分析、示例分享,把Kafka的实现脉络展示在读者面前,帮助读者更好地研读Kafka代码。

麻烦帮忙转发一下这篇文章+关注我

[外链图片转存中…(img-kexKHHkB-1715533449969)]

本文已被CODING开源项目:【一线大厂Java面试题解析+核心总结学习笔记+最新讲解视频+实战项目源码】收录

需要这份系统化的资料的朋友,可以点击这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>