大模型系列——专家混合模型 (MoE)快速指南

大模型系列——专家混合模型 (MoE)快速指南

专家混合 (MoE) 已成为一种流行的提高 LLM 效率的架构组件。在这篇博文中,我们将探讨研究人员在实现专家完美混合的道路上所采取的步骤。

专家混合模型 (MoE)快速指南

专家混合 (MoE) 已成为一种流行的提高 LLM 效率的架构组件。在这篇博文中,我们将探讨研究人员在实现专家完美混合的道路上所采取的步骤。

MoE 已用于 Mixtral、DeepSeek-V2、Qwen2–57B-A14B 和 Jamba 等模型。但是,与任何架构组件一样,它具有超参数(专家总数、活跃专家数量、粒度),这些超参数会影响最终模型质量。

1、MoE 简介

在 GPU 和数据密集型 LLM 的世界中,在各种宝贵资源之间找到平衡非常重要。例如,如果我们希望 LLM 在各种任务中表现出色,可以通过增加参数数量来实现,这反过来会使推理(以及训练)更耗费计算资源。

MoE 的出现是为了创建一个规模大、能力强但在推理阶段要求稍低的 LLM。 MoE 建议拥有多个(例如 8 个)独立版本的前馈块 (FFN) — “专家” — 以及一个路由器,该

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值