Redis必知必会之zset底层—Skip List跳跃列表(面试加分项),一起看看这些大厂面试真题查漏补缺吧

本文深入探讨了Redis中Skip List的特性,包括其时间复杂度计算、查询、插入和删除操作。通过分析,得出Skip List的平均层数和查询效率,指出其时间复杂度为O(logn)。此外,文章还介绍了如何手写实现一个简单的Skip List,包括Node节点的定义和SkipList操作类的实现。文章适合准备Redis和面试的开发者阅读,以了解Skip List的原理和实际应用。
摘要由CSDN通过智能技术生成

得出节点的平均层数(节点包含的平均指针数目):

在这里插入图片描述

所以Redis中p=1/4计算的平均指针数目为1.33

2.3.3 时间复杂度计算

以下推算来自论文内容

假设p=1/2,在以p=1/2生成的16个元素的跳过列表中,我们可能碰巧具有9个元素,1级3个元素,3个元素3级元素和1个元素14级(这不太可能,但可能会发生)。我们该怎么处理这种情况?如果我们使用标准算法并在第14级开始我们的搜索,我们将会做很多无用的工作。那么我们应该从哪里开始搜索?此时我们假设SkipList中有n个元素,第L层级元素个数的期望是1/p个;每个元素出现在L层的概率是p^(L-1), 那么第L层级元素个数的期望是 n * (p^L-1);得到1 / p =n * (p^L-1)

1 / p = n * (p^L-1)

n = (1/p)^L

L = log(1/p)^n

所以我们应该选择MaxLevel = log(1/p)^n

定义:MaxLevel = L(n) = log(1/p)^n

推算Skip List的时间复杂度,可以用逆向思维,从层数为i的节点x出发,返回起点的方式来回溯时间复杂度,节点x点存在两种情况:

  • 节点x存在(i+1)层指针,那么向上爬一级,概率为p,对应下图situation c.

  • 节点x不存在(i+1)层指针,那么向左爬一级,概率为1-p,对应下图situation b.

在这里插入图片描述

设C(k) = 在无限列表中向上攀升k个level的搜索路径的预期成本(即长度)那么推演如下:

C(0)=0

C(k)=(1-p)×(情况b的查找长度) + p×(情况c的查找长度)

C(k)=(1-p)(C(k)+1) + p(C(k-1)+1)

C(k)=1/p+C(k-1)

C(k)=k/p

上面推演的结果可知,爬升k个level的预期长度为k/p,爬升一个level的长度为1/p。

由于MaxLevel = L(n), C(k) = k / p,因此期望值为:(L(n) – 1) / p;将L(n) = log(1/p)^n 代入可得:(log(1/p)^n - 1) / p;将p = 1 / 2 代入可得:2 * log2^n - 2,即O(logn)的时间复杂度。

三、Skip List特性及其实现

2.1 Skip List特性

Skip List跳跃列表通常具有如下这些特性

  1. Skip List包含多个层,每层称为一个level,level从0开始递增

  2. Skip List 0层,也就是最底层,应该包含所有的元素

  3. 每一个level/层都是一个有序的列表

  4. level小的层包含level大的层的元素,也就是说元素A在X层出现,那么 想X>Z>=0的level/层都应该包含元素A

  5. 每个节点元素由节点key、节点value和指向当前节点所在level的指针数组组成

2.2 Skip List查询

假设初始Skip List跳跃列表中已经存在这些元素,他们分布的结构如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值