
感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的:
① 2000多本Python电子书(主流和经典的书籍应该都有了)
② Python标准库资料(最全中文版)
③ 项目源码(四五十个有趣且经典的练手项目及源码)
④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)
⑤ Python学习路线图(告别不入流的学习)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
联邦学习实战-2-用FATE从零实现横向逻辑回归_文杰的博客-CSDN博客
Ubuntu18.04上部署单机 Fate1.6.0, 并使用PyCharm进行开发和调试。 - 老妹儿的 - 博客园 (cnblogs.com)
参考这两篇就可以实现单机版的部署和横向联邦学习,建议大家在做集群横向联邦学习之前,先把单机版的搞明白。搞明白单机版后,实现集群的横向联邦。我的集群是个星型的集群,三个节点通过exchange相链接,三个节点的patryid分别是9999,10000,8888。文章对实现过程做个记录。
==================================================================
数据集和单机版的一样也是采用威斯康星州临床科学中心开源的乳腺癌肿瘤数据集
from sklearn.datasets import load_breast_cancer
为了模拟横向联邦建模的场景,我们首先在本地将乳腺癌数据集切分为特征相同的横向联邦形式,当前的breast数据集有569条样本,我们将前面的469条作为训练样本,后面的100条作为评估测试样本。
从469条训练样本中,选取前200条作为公司A的本地数据,保存为breast_1_train.csv,将剩余的269条数据作为公司B的本地数据,保存为breast_2_train.csv。
测试数据集可以不需要切分,两个参与方使用相同的一份测试数据即可,文件命名为breast_eval.csv。
splitDataset.py
from sklearn.datasets import load_breast_cancer
import pandas as pd
breast_dataset = load_breast_cancer()
breast = pd.DataFrame(breast_dataset.data, columns=breast_dataset.feature_names)
breast = (breast-breast.mean())/(breast.std())
col_names = breast.columns.values.tolist()
columns = {}
for idx, n in enumerate(col_names):
columns[n] = “x%d”%idx

最低0.47元/天 解锁文章

1万+

被折叠的 条评论
为什么被折叠?



