既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
阅读下列两组命题,语言上有什么特点?
A组:
(1)对任意一个x∈Z,2x+1是整数;
(2)每一个素数都是奇数;
(3)所有的矩形都是平行四边形。(事物的全部)
B组:
(1)有些三角形是等腰三角形;
(2)至少有一个四边形,它的对角线互相垂直;
(3)存在一个x∈R,使得
>0.。(事物的一部分)
全称量词
“任意一个” ,“每一个”,“所有的”在逻辑中通常叫做全称量词,用符号“”表示.含有全称量词的命题,叫做全称量词命题。
A组命题改用集合语言叙述为:
(1)对于整数集合中的任意一个元素x,2.x+1是整数。
(2)素数集合中的任意一个元素x都是奇数。
(3)矩形集合中的任意一个元素x都是平行四边形。
结构特点:集合M中的任意一个元素x,都满足条件p。
一般形式:对M中任意一个x,都有p(x)成立。
用符号简记为:
x∈M, p(x)。
存在量词
“有些”、“至少有一个”、存在一个”在逻辑中通常叫做存在量词,用符号“”表示.含有存在量词的命题,叫做存在量词命题。
结构特点:集合M中至少存在一个元素x,满足条件p。
一般形式:存在M中的元素x,使得p(x)成立。
用符号简记为:x∈M, p(x)。
1.判断命题的真假
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**