Elasticsearch学习-索引操作及Mapping映射_es建索引建mapping

}
 
POST /indexName/_update/id
{
  “doc”:{
     “fieldName”:“”
   }
}

3.按条件删除数据

POST /indexName/_doc/_delete_by_query
{
  “query”: {
    “term”: {
      “fieldName”: “11”
    }
  }
}

三、Mapping映射

定义文档及其包含字段的存储和索引信息,类似“表结构” 概念

包含属性:字段名称、类型、字段使用的分词器、是否评分、是否创建索引等

1)查看mapping

GET /indexName/_mappings

2) ES数据类型

常见数据类型
  1. 数字类型

long    integer    short    byte    double    float    half_float    scaled_float   unsigned_long

  1. keywords

keyword:适用于索引结构化的字段,只能精确值搜索,可以用于过滤、排序、聚合

constant_keyword:始终包含相同值的关键字字段

wildcard: 可针对类似grep的通配符查询优化日志行等类似的关键字值
3. 时间类型 Dates :包括 date和date_nanos

  1. alias 定义别名

  2. binary 二进制

  3. range 区间类型 integer_range、float_range、long_range、double_range、date_range

  4. text 类型

设置text类型以后,字段内容会被分析,在生成倒排索引(默认)以前,字符串会被分析器分成一个一个词项,text类型的字段不用于排序,很少用于聚合

对象关系类型
  1. object : 用于单个JSON对象

  2. nested: 用于JSON对象数组

  3. flattened: 允许将整个JSON对象索引为单个字段

结构化类型
  1. geo-point:纬度/经度积分

​2. geo-shape:用于多边形等复杂形状

  1. point:笛卡尔坐标点

  2. shape:笛卡尔任意几何图形

特殊类型(常用)

1. IP地址:ip 用于IPv4和IPv6地址

  1. completion 提供自动完成建议
数组 array

在Elasticsearch中,数组不需要专用的字段数据类型。默认情况下,任何字段都可以包含零个或多个值,但是,数组中的所有值都必须具有相同的数据类型

3)映射类型

动态 自动映射

PUT /product_mapping/_doc/1
{
  “name”: “手机”,
  “desc”: “插入数据 直接自动映射”,
  “count”: 100,
  “price”: 1999.9,
  “date”: “2022-12-7”,
  “isdel”: true,
  “tags”: [
    “xiaoqiao”,
    “fashion”
  ]
}

静态 手动映射

案例

PUT /product
{
  “mappings”: {
    “properties”: {
      “date”: {
        “type”: “text”
      },
      “desc”: {
        “type”: “text”,
        “analyzer”: “english”
      },
      “name”: {
        “type”: “text”,
        “index”: “false”
      },
      “price”: {
        “type”: “long”
      },
      “tags”: {
        “type”: “text”,
        “index”: “true”
      },
      “parts”: {
        “type”: “object”
      },
      “partlist”: {
        “type”: “nested”
      }
    }
  }
}

常用映射参数
  1. index: 是否对当前字段创建倒排索引,默认为true,若为false,该字段不会通过索引被搜索到,但是仍会在source元数据中展示

  2. analyzer:指定分析器(character filter、tokenizer、Token filters)

  3. doc_values:为了提升排序和聚合效率,默认true,如果确定不需要对字段进行排序或聚合,也不需要通过脚本访问字段值,则可以禁用doc值以节省磁盘空间(不支持text和annotated_text)

  4. eager_global_ordinals:用于聚合的字段上,优化聚合性能

  5. enable:是否创建倒排索引,可以对字段操作,也可以对索引操作

PUT my_index
 {
    “mappings”: 
    {
       “enabled”: false
    }
  }

6.  fielddata:查询时内存数据结构,在首次用当前字段聚合、排序或者在脚本中使用时,需要字段为fielddata数据结构,并且创建倒排索引保存到堆中

#每个tag产品的数量   “size”:0, 不显示原始结果
GET /product/_search
{
  “aggs”: {
    “tag_agg_group”: {
      “terms”: {
        “field”: “tags”
      }
    }
  },
  “size”:0
}
 
#将文本field的fielddata属性设置为true
PUT /product/_mapping
{
  “properties”: {
    “tags”: {
      “type”: “text”,
      “fielddata”: true
    }
  }
}

7. fields:给field创建多字段,用于不同目的(全文检索或者聚合分析排序)

# 给product创建一个keyword
PUT fields_test
{
  “mappings”: {
    “properties”: {
      “product”: {
        “type”: “text”,
        “fields”: {
          “raw”: { 
            “type”:  “keyword”
          }
        }
      }
    }
  }
}

插入数据

PUT fields_test/_doc/1
{
  “product”: “New York”
}

查询数据

GET fields_test/_search
{
  “query”: {
    “match”: {
      “product”: “york” 
    }
  },
  “sort”: {
    “product.raw”: “asc” 
  },
  “aggs”: {
    “product”: {
      “terms”: {
        “field”: “product.raw” 
      }
    }
  }
}

8. norms:是否禁用评分(在filter和聚合字段上应该禁用)

9.  null_value:为null值设置默认值

10. search_analyzer:设置单独的查询时分析器

11. store:设置字段是否仅查询

12. format:格式化

“date”: {
     “type”:  “date”,
     “format”: “yyyy-MM-dd”
   }

13. copy_to 将多个字段的值复制到组字段中,然后可以将其作为单个字段进行查询

# mapping映射
PUT copy_to_test

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
img

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

g-wSTPTdxV-1712958710330)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
[外链图片转存中…(img-mAbZAL5y-1712958710331)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

好的,我可以帮你回答这个问题。 使用Java客户端创建索引映射,需要连接Elasticsearch服务器,并使用Elasticsearch Java API进行操作。以下是一个简单的示例代码,用于创建索引映射: ```java import org.elasticsearch.action.admin.indices.create.CreateIndexRequest; import org.elasticsearch.action.admin.indices.mapping.put.PutMappingRequest; import org.elasticsearch.client.RequestOptions; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.common.xcontent.XContentBuilder; import org.elasticsearch.common.xcontent.XContentFactory; import org.elasticsearch.common.xcontent.XContentType; import org.elasticsearch.common.xcontent.json.JsonXContent; import java.io.IOException; public class ElasticSearchIndexAndMapping { private static final String INDEX_NAME = "example_index"; private static final String TYPE_NAME = "example_type"; public static void main(String[] args) throws IOException { RestHighLevelClient client = new RestHighLevelClient(/* your Elasticsearch client configuration */); // Create index request CreateIndexRequest request = new CreateIndexRequest(INDEX_NAME); // Create index mapping XContentBuilder builder = XContentFactory.jsonBuilder(); builder.startObject(); { builder.startObject("properties"); { builder.startObject("field1"); { builder.field("type", "text"); } builder.endObject(); } builder.endObject(); } builder.endObject(); // Put mapping request PutMappingRequest mappingRequest = new PutMappingRequest(INDEX_NAME); mappingRequest.type(TYPE_NAME); mappingRequest.source(builder); // Execute requests client.indices().create(request, RequestOptions.DEFAULT); client.indices().putMapping(mappingRequest, RequestOptions.DEFAULT); client.close(); } } ``` 在此示例中,我们使用了 `CreateIndexRequest` `PutMappingRequest` 类来创建索引映射。我们首先创建了一个名为 `example_index` 的索引,并指定了一个名为 `example_type` 的类型。然后,我们使用 `XContentBuilder` 来构映射。在此示例中,我们只创建了一个名为 `field1` 的字段,并将其类型设置为 `text`。最后,我们使用 `RestHighLevelClient` 来执行创建索引映射的请求。 请注意,以上示例仅表示如何创建索引映射。如果您需要更详细的功能,例如添加文档或查询索引,请查看Elasticsearch Java API文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值