


既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
示例4:获取行标签为 1957 行的所有列的数据
示例5:获取行标签为 1957 行的 lifeExp 列的数据
**示例实现**:
1)示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据
示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据
china_df.loc[[1952, 1962, 1972], [‘country’, ‘pop’, ‘gdpPercap’]]

2)示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据
示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据
china_df.loc[[1952, 1962, 1972]]

3)示例3:获取所有行的 country、pop、gdpPercap 列的数据
示例3:获取所有行的 country、pop、gdpPercap 列的数据
china_df.loc[:, [‘country’, ‘pop’, ‘gdpPercap’]]

4)示例4:获取行标签为 1957 行的所有列的数据
示例4:获取行标签为 1957 行的所有列的数据
china_df.loc[1957]

示例4:获取行标签为 1957 行的所有列的数据
china_df.loc[[1957]]

5)示例5:获取行标签为 1957 行的 lifeExp 列的数据
示例5:获取行标签为 1957 行的 lifeExp 列的数据
china_df.loc[[1957], ‘lifeExp’]
或
china_df.loc[1957, [‘lifeExp’]]
或
china_df.loc[1957, ‘lifeExp’]

#### 4.2 iloc函数获取指定行列的数据
**基本格式**:
| 语法 | 说明 |
| --- | --- |
| `df.iloc[[行位置1, ...], [列位置1, ...]]` | 根据行位置和列位置获取对应行的对应 列的数据,结果为:DataFrame |
| `df.iloc[[行位置1, ...]]` | 根据行位置获取对应行的所有列的数据 结果为:DataFrame |
| `df.iloc[:, [列位置1, ...]]` | 根据列位置获取所有行的对应列的数据 结果为:DataFrame |
| `df.iloc[行位置]` | 结果只有一行,结果为:Series |
| `df.iloc[[行位置]]` | 结果只有一行,结果为:DataFrame |
| `df.iloc[[行位置], 列位置]` | 结果只有一行一列,结果为:Series, 行标签作为 Series 的索引标签 |
| `df.iloc[行位置, [行位置]]` | 结果只有一行一列,结果为:Series, 列标签作为 Series 的索引标签 |
| `df.iloc[行位置, 行位置]` | 结果只有一行一列,结果为单个值 |
**演示示例**:
示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
示例2:获取行位置为 0, 2, 4 行的所有列的数据
示例3:获取所有行的列位置为 0、1、2 列的数据
示例4:获取行位置为 1 行的所有列的数据
示例5:获取行位置为 1 行的列位置为 2 列的数据
**示例实现**:
1)示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
china_df.iloc[[0, 2, 4], [0, 1, 2]]

2)示例2:获取行位置为 0, 2, 4 行的所有列的数据
示例2:获取行位置为 0, 2, 4 行的所有列的数据
china_df.iloc[[0, 2, 4]]

3)示例3:获取所有行的列位置为 0、1、2 列的数据
示例3:获取所有行的列位置为 0、1、2 列的数据
china_df.iloc[:, [0, 1, 2]]

4)示例4:获取行位置为 1 行的所有列的数据
示例4:获取行位置为 1 行的所有列的数据
china_df.iloc[1]

示例4:获取行位置为 1 行的所有列的数据
china_df.iloc[[1]]

5)示例5:获取行位置为 1 行的列位置为 2 列的数据
示例5:获取行位置为 1 行的列位置为 2 列的数据
china_df.iloc[[1], 2]
或
china_df.iloc[1, [2]]
或
china_df.iloc[1, 2]

#### 4.3 loc和iloc的切片操作
**基本格式**:
| 语法 | 说明 |
| --- | --- |
| `df.loc[起始行标签:结束行标签, 起始列标签:结束列标签]` | 根据行列标签范围获对应行的对应列的数据,包含起始行列标签和结束行列标签 |
| `df.iloc[起始行位置:结束行位置, 起始列位置:结束列位置]` | 根据行列标签位置获对应行的对应列的数据,包含起始行列位置,但不包含结束行列位置 |
**演示示例**:
示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现

**示例实现**:
1)示例1:获取 china\_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现
示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现
china_df.loc[1952:1962, ‘country’:‘lifeExp’]
或
china_df.iloc[0:3, 0:3]

#### 4.4 [] 语法获取指定行列的数据
**基本格式**:
| 语法 | 说明 |
| --- | --- |
| `df[['列标签1', '列标签2', ...]]` | 根据列标签获取所有行的对应列的数据,结果为:DataFrame |
| `df['列标签']` | 根据列标签获取所有行的对应列的数据 1)如果结果只有一列,结果为:Series, 行标签作为 Series 的索引标签 2)如果结果有多列,结果为:DataFrame |
| `df[['列标签']]` | 根据列标签获取所有行的对应列的数据,结果为:DataFrame |
| `df[起始行位置:结束行位置]` | 根据指定范围获取对应行的所有列的数据,不包括结束行位置 |
**演示示例**:
示例1:获取所有行的 country、pop、gdpPercap 列的数据
示例2:获取所有行的 pop 列的数据
示例3:获取前三行的数据
示例4:从第一行开始,每隔一行获取一行数据,一共获取3行
**示例实现**:
1)示例1:获取所有行的 country、pop、gdpPercap 列的数据
示例1:获取所有行的 country、pop、gdpPercap 列的数据
china_df[[‘country’, ‘pop’, ‘gdpPercap’]]

2)示例2:获取所有行的 pop 列的数据
示例2:获取所有行的 pop 列的数据
china_df[‘pop’]



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
[外链图片转存中…(img-2jGztbIh-1715497666780)]
[外链图片转存中…(img-5WhCNQ2t-1715497666781)]
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
1116

被折叠的 条评论
为什么被折叠?



