最新Python大数据之pandas快速入门(二)_python提取指定行内容,大数据开发插件化入门指南

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

示例4:获取行标签为 1957 行的所有列的数据
示例5:获取行标签为 1957 行的 lifeExp 列的数据


**示例实现**:


1)示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据



示例1:获取行标签为 1952, 1962, 1972 行的 country、pop、gdpPercap 列的数据

china_df.loc[[1952, 1962, 1972], [‘country’, ‘pop’, ‘gdpPercap’]]


![img](https://img-blog.csdnimg.cn/img_convert/63932fd17e7ed429305ea05111c83417.png)


2)示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据



示例2:获取行标签为 1952, 1962, 1972 行的所有列的数据

china_df.loc[[1952, 1962, 1972]]


![img](https://img-blog.csdnimg.cn/img_convert/7940aeb3bd858d36054df8e22901dc84.png)


3)示例3:获取所有行的 country、pop、gdpPercap 列的数据



示例3:获取所有行的 country、pop、gdpPercap 列的数据

china_df.loc[:, [‘country’, ‘pop’, ‘gdpPercap’]]


![img](https://img-blog.csdnimg.cn/img_convert/562fffb73af941ddf69c93e541aa6e48.png)


4)示例4:获取行标签为 1957 行的所有列的数据



示例4:获取行标签为 1957 行的所有列的数据

china_df.loc[1957]


![img](https://img-blog.csdnimg.cn/img_convert/5780fd8376978197dccc4618b7f19c08.png)



示例4:获取行标签为 1957 行的所有列的数据

china_df.loc[[1957]]


![img](https://img-blog.csdnimg.cn/img_convert/f4a1eac167c652fe715632f0d5ff50fd.png)


5)示例5:获取行标签为 1957 行的 lifeExp 列的数据



示例5:获取行标签为 1957 行的 lifeExp 列的数据

china_df.loc[[1957], ‘lifeExp’]

china_df.loc[1957, [‘lifeExp’]]

china_df.loc[1957, ‘lifeExp’]


![img](https://img-blog.csdnimg.cn/img_convert/b0a73f49958aced79e7bbe00937dcae6.png)


#### 4.2 iloc函数获取指定行列的数据


**基本格式**:




| 语法 | 说明 |
| --- | --- |
| `df.iloc[[行位置1, ...], [列位置1, ...]]` | 根据行位置和列位置获取对应行的对应 列的数据,结果为:DataFrame |
| `df.iloc[[行位置1, ...]]` | 根据行位置获取对应行的所有列的数据 结果为:DataFrame |
| `df.iloc[:, [列位置1, ...]]` | 根据列位置获取所有行的对应列的数据 结果为:DataFrame |
| `df.iloc[行位置]` | 结果只有一行,结果为:Series |
| `df.iloc[[行位置]]` | 结果只有一行,结果为:DataFrame |
| `df.iloc[[行位置], 列位置]` | 结果只有一行一列,结果为:Series, 行标签作为 Series 的索引标签 |
| `df.iloc[行位置, [行位置]]` | 结果只有一行一列,结果为:Series, 列标签作为 Series 的索引标签 |
| `df.iloc[行位置, 行位置]` | 结果只有一行一列,结果为单个值 |


**演示示例**:



示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据
示例2:获取行位置为 0, 2, 4 行的所有列的数据
示例3:获取所有行的列位置为 0、1、2 列的数据
示例4:获取行位置为 1 行的所有列的数据
示例5:获取行位置为 1 行的列位置为 2 列的数据


**示例实现**:


1)示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据



示例1:获取行位置为 0, 2, 4 行的 0、1、2 列的数据

china_df.iloc[[0, 2, 4], [0, 1, 2]]


![img](https://img-blog.csdnimg.cn/img_convert/918b1316fac61cdef37518e76d25c92b.png)


2)示例2:获取行位置为 0, 2, 4 行的所有列的数据



示例2:获取行位置为 0, 2, 4 行的所有列的数据

china_df.iloc[[0, 2, 4]]


![img](https://img-blog.csdnimg.cn/img_convert/990bf6a6ade3a3a800cdfcd3f71d1d14.png)


3)示例3:获取所有行的列位置为 0、1、2 列的数据



示例3:获取所有行的列位置为 0、1、2 列的数据

china_df.iloc[:, [0, 1, 2]]


![img](https://img-blog.csdnimg.cn/img_convert/a8a94d64c113ca5e8ad1ec36560400fe.png)


4)示例4:获取行位置为 1 行的所有列的数据



示例4:获取行位置为 1 行的所有列的数据

china_df.iloc[1]


![img](https://img-blog.csdnimg.cn/img_convert/772a3196c5029b7d7514c62111f8578d.png)



示例4:获取行位置为 1 行的所有列的数据

china_df.iloc[[1]]


![img](https://img-blog.csdnimg.cn/img_convert/7a048d42c1ca3927f427e60b744d573a.png)


5)示例5:获取行位置为 1 行的列位置为 2 列的数据



示例5:获取行位置为 1 行的列位置为 2 列的数据

china_df.iloc[[1], 2]

china_df.iloc[1, [2]]

china_df.iloc[1, 2]


![img](https://img-blog.csdnimg.cn/img_convert/e47b49bdf67b343591d36a6af25d1fb2.png)


#### 4.3 loc和iloc的切片操作


**基本格式**:




| 语法 | 说明 |
| --- | --- |
| `df.loc[起始行标签:结束行标签, 起始列标签:结束列标签]` | 根据行列标签范围获对应行的对应列的数据,包含起始行列标签和结束行列标签 |
| `df.iloc[起始行位置:结束行位置, 起始列位置:结束列位置]` | 根据行列标签位置获对应行的对应列的数据,包含起始行列位置,但不包含结束行列位置 |


**演示示例**:



示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现


![img](https://img-blog.csdnimg.cn/img_convert/5a1cef934c4392b6b6fbbcc5a5e3ca5c.png)


**示例实现**:


1)示例1:获取 china\_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现



示例1:获取 china_df 中前三行的前三列的数据,分别使用上面介绍的loc和iloc实现

china_df.loc[1952:1962, ‘country’:‘lifeExp’]

china_df.iloc[0:3, 0:3]


![img](https://img-blog.csdnimg.cn/img_convert/0f2af834b62ef29de8240e7b99739b10.png)


#### 4.4 [] 语法获取指定行列的数据


**基本格式**:




| 语法 | 说明 |
| --- | --- |
| `df[['列标签1', '列标签2', ...]]` | 根据列标签获取所有行的对应列的数据,结果为:DataFrame |
| `df['列标签']` | 根据列标签获取所有行的对应列的数据 1)如果结果只有一列,结果为:Series, 行标签作为 Series 的索引标签 2)如果结果有多列,结果为:DataFrame |
| `df[['列标签']]` | 根据列标签获取所有行的对应列的数据,结果为:DataFrame |
| `df[起始行位置:结束行位置]` | 根据指定范围获取对应行的所有列的数据,不包括结束行位置 |


**演示示例**:



示例1:获取所有行的 country、pop、gdpPercap 列的数据
示例2:获取所有行的 pop 列的数据
示例3:获取前三行的数据
示例4:从第一行开始,每隔一行获取一行数据,一共获取3行


**示例实现**:


1)示例1:获取所有行的 country、pop、gdpPercap 列的数据



示例1:获取所有行的 country、pop、gdpPercap 列的数据

china_df[[‘country’, ‘pop’, ‘gdpPercap’]]


![img](https://img-blog.csdnimg.cn/img_convert/24ad32a1ca95c7e3bf49cfcd26e7e7d7.png)


2)示例2:获取所有行的 pop 列的数据



示例2:获取所有行的 pop 列的数据

china_df[‘pop’]

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

[外链图片转存中…(img-2jGztbIh-1715497666780)]
[外链图片转存中…(img-5WhCNQ2t-1715497666781)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>