基于PySpark的10亿级数据集LAION-5B元数据快速处理实践(全文分享)_laion-5b license

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

│ └── part-00123-5114fd87-297e-42b0-9d11-50f1df323dfa-c000.snappy.parquet
└── laion2B-multi
├── part-00001-fc82da14-99c9-4ff6-ab6a-ac853ac82819-c000.snappy.parquet
├── part-00026-fc82da14-99c9-4ff6-ab6a-ac853ac82819-c000.snappy.parquet
├── part-00030-fc82da14-99c9-4ff6-ab6a-ac853ac82819-c000.snappy.parquet
├── part-00034-fc82da14-99c9-4ff6-ab6a-ac853ac82819-c000.snappy.parquet
└── part-00125-fc82da14-99c9-4ff6-ab6a-ac853ac82819-c000.snappy.parquet


### 三、 **Parquet元数据处理**


在官方下载parquet元数据时,发现以下几个小问题:


1. similarity、aesthetic\_score等指标分布在多个parquet文件中,字段分散、类型不统一,需要多次下载。使用时需要先关联组合查询,TB级的文件处理速度慢,需要高配置的服务器进行处理;
2. parquet文件中图片存储路径规则不明确,通过parquet过滤筛选图片时,无法关联下载图片的存储路径和其它字段
3. parquet文件中parquet\_id、hash等字段重复,影响图片的唯一索引
4. 通过url下载的图片格式未知(有webp、jpg、png、avif等多种格式),影响下载图片的预览和存储


为了满足不同场景的数据使用需求,保证图片唯一索引ID,我们对官方的parquet文件进行了关联合并、字段补充等操作,形成一张字段丰富的“宽表”,数据表结构与字段设计如下:



![](https://img-blog.csdnimg.cn/img_convert/03e239d5fcaa5b95559ac26ed4b5c8b4.png)



上表中,最后一列是parquet文件来源,表示字段对应的parquet文件。 这里使用了官方的3处parquet文件,数据预览、下载链接如下:


**1.** **初始Laion5B**


* [https://huggingface.co/datasets/laion/laion2B-en]( )
* [https://huggingface.co/datasets/laion/laion2B-multi]( )
* [https://huggingface.co/datasets/laion/laion1B-nolang]( )


**2. Joined: with punsafe and pwatermark**


* [https://huggingface.co/datasets/laion/laion2B-en-joined]( )
* [https://huggingface.co/datasets/laion/laion2B-multi-joined]( )
* [https://huggingface.co/datasets/laion/laion1B-nolang-joined]( )


**3. Laion-aesthetic**


Laion aesthetic is a laion5B subset with aesthetic > 7 pwatermark < 0.8 punsafe < 0.5 See


* [https://huggingface.co/datasets/laion/laion1B-nolang-aesthetic]( )
* [https://huggingface.co/datasets/laion/laion2B-en-aesthetic]( )
* [https://huggingface.co/datasets/laion/laion2B-multi-aesthetic]( )


### 四、 **处理流程及步骤**


下面聊聊“宽表”的加工处理过程,有需求的同事可参考对官方的原始parquet进行处理。嫌麻烦的同学,可以交给opendatalab,在网站下载处理好的parquet文件。([https://opendatalab.com/LAION-5B]( )*)*


因为parquet文件数据量较大,有几个TB,这里我们使用了大数据集群进行了分布式处理。


**● 使用的技术栈有:**


Spark/Hadooop/Hive/HDFS/Impala


**● 集群硬件配置:**


服务器3台,48core Cpu, 750GB Memory, 4TB Hard disk


**● 数据处理过程和流程图如下:**


**数据输入:**


- 下载官网parquet文件,并load到Hive表


- 解析下载的图片,判断图片类型,形成id, image\_path, image\_suffix的映射文件


**数据处理:**


- 读取Hive表数据,通过PySpark对Hive表的数据进行分布式join关联操作


**数据输出:**


- Hive结果表导出为parquet格式文件,并上传至OSS/Ceph存储



![](https://img-blog.csdnimg.cn/img_convert/02658f1ea2721d4276ff637a5833c8b5.png)

为了方便数据处理,这里对数据表进行简单的分层:


**- ODS层:**原始parquet文件load Hive后的结构化数据表,其中表2是对表1字段进行了裁减,表3是下载图片相关的信息。因为官方parquet文件只提供了下载url链接,我们并不知道图片类型和后缀,所以对下载的图片文件进行程序判定,识别出图片类型,对应image\_suffix字段,image\_path是图片的存储路径。


**- DMD层:**通过对表2、3、4进行join关联操作,生成中间表6


**- DMS层:**将中间表6与含有punsafe、pwatermark信息的表5进行关联,得到最后的结果表7



![](https://img-blog.csdnimg.cn/img_convert/00634245fdd13b0a4943bb4aa601748f.jpeg)



数据处理操作和代码示例如下:


#### 4-1. Data load


主要操作是将parquet文件load到Hive表,load操作完成后,得到图中的1、3、4、5四张Hive表。


以初始parquet文件load为例,示例代码如下。



import os
from pyspark.sql import HiveContext, SQLContext
from pyspark.sql.functions import lit, input_file_name
from pyspark.sql.functions import col, udf
from pyspark.sql.types import StringType, LongType
import mmh3

sc = spark.sparkContext
sql_context = SQLContext(sc)

通过url/text计算hash值

def compute_hash(url, text):
if url is None:
url = ‘’

if text is None:
    text = ''

total = (url + text).encode("utf-8")
return mmh3.hash64(total)[0]

注册spark udf

udf_compute_hash = udf(compute_hash, LongType())

提取input_file_name路径中的文件名称

def path_proc(file_path):
return str(file_path).split(“/”)[-1]

udf_path_proc = udf(path_proc)

因数据总量较大,这里按子集分批读取

parquet_path = “/nvme/datasets/laion5b/parquet/laion2B-en”

parquet_path = “/nvme/datasets/laion5b/parquet/laion2B-multi”

parquet_path = “/nvme/datasets/laion5b/parquet/laion2B-nolang”

Hive一级分区名称

head_tail = os.path.split(parquet_path)
partition_name = head_tail[1]

parquet_df = spark.read.parquet(f"file://{parquet_path}/*.parquet")
parquet_df = parquet_df.withColumn(“file_name”, input_file_name())
parquet_df = parquet_df.withColumn(“hash”, udf_compute_hash(parquet_df[“URL”], parquet_df[“TEXT”]))
parquet_df = parquet_df.withColumn(“dir_name”, lit(f"{partition_name}"))
parquet_df = parquet_df.withColumn(“file_name”, udf_path_proc(parquet_df[“file_name”]))

自定义视图名称,并注册视图

view_name = ‘parquet_view’
parquet_df.createOrReplaceTempView(f"{view_name}")

数据写入Hive分区表,一级分区名称dir_name,二级分区名称file_name

sql_context.sql(f"insert overwrite table laion5b.parquet_view partition(dir_name=‘{partition_name}’, file_name) select SAMPLE_ID,URL,TEXT,HEIGHT,WIDTH, LICENSE,NSFW,similarity,hash, file_name from {view_name}")


#### 4-2. Data processing


数据处理过程主要包括数据表裁减、hash join操作。


因为表1的数据量较大,存在字段冗余,这里对表1的部分字段进行裁减得到表2。 表2、3、4的join代码如下,先将图片的sample\_id、licenese、nsfw、image\_suffix、aesthetic\_score字段,按hash值进行关联,合并成一张表。 因为需要使用file\_name作为Hive表二级动态分区,也避免大量数据join导致OOM,这里按dir\_name分别进行join操作,不同的分区修改对应的dir\_name即可。



join_sql = “”"
insert overwrite table laion5b.dmd_image_path_suffix_aesthetics_join_view PARTITION (dir_name = ‘laion2B-en’, file_name)
select A.sample_id,
A.hash,
B.image_path,
B.image_suffix,
A.license,
A.nsfw,
C.aesthetic_score,
A.file_name
from laion5b.ods_parquet_short_view A
left join laion5b.ods_image_path_view B on A.hash = B.hash
and B.dir_name = ‘laion2B-en’
left join laion5b.ods_improved_aesthetics_parquet_view C on A.hash = C.hash
where A.dir_name = ‘laion2B-en’
“”"

join_df = sqlContext.sql(join_sql)


表5与表6通过hash字段进行join,得到result结果表7。



sc = spark.sparkContext
sqlContext = SQLContext(sc)

join_sql = “”"
insert overwrite table laion5b.dms_parquet_result_view PARTITION (dir_name = ‘laion2B-en’, file_name)
select B.id, B.sample_id, A.url, A.text, A.width, A.height,
A.similarity, A.hash, A.punsafe, A.pwatermark,

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

qkoEc-1715410209609)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

可以使用PyTorch中的nn.Module来实现GoogLeNet网络。在CIFAR-10数据集上进行分类任务时,需要将输入的图片大小调整为32x32。 以下是一个基于PyTorch实现的GoogLeNet网络的示例代码: ``` import torch import torch.nn as nn import torch.nn.functional as F class InceptionModule(nn.Module): def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj): super(InceptionModule, self).__init__() self.branch1 = nn.Sequential( nn.Conv2d(in_channels, ch1x1, kernel_size=1), nn.BatchNorm2d(ch1x1), nn.ReLU(inplace=True) ) self.branch2 = nn.Sequential( nn.Conv2d(in_channels, ch3x3red, kernel_size=1), nn.BatchNorm2d(ch3x3red), nn.ReLU(inplace=True), nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1), nn.BatchNorm2d(ch3x3), nn.ReLU(inplace=True) ) self.branch3 = nn.Sequential( nn.Conv2d(in_channels, ch5x5red, kernel_size=1), nn.BatchNorm2d(ch5x5red), nn.ReLU(inplace=True), nn.Conv2d(ch5x5red, ch5x5, kernel_size=5, padding=2), nn.BatchNorm2d(ch5x5), nn.ReLU(inplace=True) ) self.branch4 = nn.Sequential( nn.MaxPool2d(kernel_size=3, stride=1, padding=1), nn.Conv2d(in_channels, pool_proj, kernel_size=1), nn.BatchNorm2d(pool_proj), nn.ReLU(inplace=True) ) def forward(self, x): branch1_output = self.branch1(x) branch2_output = self.branch2(x) branch3_output = self.branch3(x) branch4_output = self.branch4(x) outputs = [branch1_output, branch2_output, branch3_output, branch4_output] return torch.cat(outputs, 1) class GoogLeNet(nn.Module): def __init__(self): super(GoogLeNet, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Sequential( nn.Conv2d(64, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(inplace=True) ) self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32) self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64) self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64) self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64) self.inception4c = InceptionModule(512, 128, 128, 256, 24, 64, 64) self.inception4d = InceptionModule(512, 112, 144, 288, 32, 64, 64) self.inception4e = InceptionModule(528, 256, 160, 320, 32, 128, 128) self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.inception5a = InceptionModule(832, 256, 160, 320, 32, 128, 128) self.inception5b = InceptionModule(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.dropout = nn.Dropout(p=0.4) self.fc = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.maxpool1(x) x = self.conv2(x) x = self.maxpool2(x) x = self.inception3a(x) x = self.inception3b(x) x = self.maxpool3(x) x = self.inception4a(x) x = self.inception4b(x) x = self.inception4c(x) x = self.inception4d(x) x = self.inception4e(x) x = self.maxpool4(x) x = self.inception5a(x) x = self.inception5b(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.dropout(x) x = self.fc(x) return x ``` 以上代码中的InceptionModule类定义了Inception模块,GoogLeNet类定义了整个网络。在forward方法中,按照GoogLeNet网络的结构依次调用不同的层和模块,最后输出分类结果。可以通过对该网络进行训练来进行CIFAR-10数据集上的分类任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值