void Swap(HPDataType\* left, HPDataType\* right)
{
HPDataType temp = \*left;
\*left = \*right;
\*right = temp;
}
void AdjustDown(Heap\* hp, int n, int parent)
{
int child = parent \* 2 + 1;
while (child < n)
{
if (child + 1 < n&&hp->array[child] > hp->array[child + 1])
{
child += 1;
}
if (hp->array[child] < hp->array[parent])
{
Swap(&hp->array[child], &hp->array[parent]);
parent = child;
child = parent \* 2 + 1;
}
else
{
return;
}
}
}
void HeapCreate(Heap\* hp, HPDataType\* a, int n)
{
assert(hp);
hp->array = (HPDataType\*)malloc(sizeof(HPDataType)\*n);
if (hp->array == NULL)
{
return;
}
memcpy(hp->array, a, sizeof(HPDataType)\*n);
hp->size = hp->capacity = n;
//先建小堆(3个元素)
for (int root = (n - 2) / 2; root >= 0; root--)
{
AdjustDown(hp, n, root);
}
//再将剩余7个元素与根结点比较插入
for (int i = n; i < 10; i++)
{
//取前三大元素,建小堆,大于堆顶元素进行交换,判断,调整
if (a[i]>hp->array[0])
{
Swap(&a[i], &hp->array[0]);
AdjustDown(hp, 3, 0);
}
}
}
void Test()
{
int arr[10] = { 5, 8, 1, 6, 3, 0, 2, 7, 4, 9 };
Heap hp;
HeapCreate(&hp, arr, 3);
for (int i = 0; i < 3; i++)
{
printf("%d ", hp.array[i]);
}
printf("\n");
}
二、二叉树链式结构的实现
1.二叉树的结构
结点类型,包括左右孩子指针以及该结点的数值域
typedef struct BTNode
{
struct BTNode\* Lchild;
struct BTNode\* Rchild;
BTNDataType data;
}BTNode;

2.二叉树的遍历
二叉树的遍历是指按某条搜索路径访问树中的每个结点,使得每个结点均被访问每一次,而且仅访问一次。由于二叉树是一种非线性结构,每个结点都可能有两棵子树,因而需要寻找一种规律,以便使二叉树上的结点能排列在一个线性队列上,进而便于遍历。
由二叉树的递归定义可知,遍历一棵二叉树便要决定对根结点 N、左子树L 和右子树R 的访问顺序。按照先遍历左子树再遍历右子树的原则,常见的遍历次序有先序 (NLR)、中序 (LNR)和后序(LRN)三种遍历算法,其中 “序” 指的是根结点在何时被访问。
2.1 前序遍历
访问根结点,先序遍历左子树,先序遍历右子树
void PreOrder(BTNode\* root)
{
if (root == NULL)
{
return;
}
printf("%d ", root->data);
PreOrder(root->left);
PreOrder(root->right);
}
2.2 中序遍历
中序遍历左子树,访问根结点,中序遍历右子树
void InOrder(BTNode\* root)
{
if (root == NULL)
{
return;
}
InOrder(root->left);
printf("%d ", root->data);
InOrder(root->right);
}
2.3 后序遍历
后序遍历左子树,后序遍历右子树,访问根结点
void PostOrder(BTNode\* root)
{
if (root == NULL)
{
return;
}
PostOrder(root->left);
PostOrder(root->right);
printf("%d ", root->data);
}
2.4 层序遍历
除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
对于目前知识储备,我们只能选择通过队列来完成对二叉树的层序遍历,大致思路就是先将根结点入队,然后在其出队的同时将它的两个孩子结点入队,一直持续到队列为空(当孩子结点为空时不入队)
主要代码:
typedef struct BinaryTreeNode\* QDataType;
void LeverOrder(BTNode\* root)
{
Queue q;
QueueInit(&q);
int leverSize = 0;
//先入根结点
if (root != NULL)
{
QueuePush(&q, root);
leverSize = 1;
}
while (!QueueEmpty(&q))
{
//此处的leverSize记录的是每一行的结点个数
while (leverSize--)
{
//注意:在这里,对头的返回值类型本应该是 int 类型的,但是为了后续的结点访问,
//要将其强制转化为二叉树结点类型
BTNode\* front = QueueFront(&q);
printf("%d ", front->data);
QueuePop(&q);
if (front->left)
{
QueuePush(&q, front->left);
}
if (front->right)
{
QueuePush(&q, front->right);
}
}
printf("\n");
leverSize = QueueSize(&q);
}
printf("\n");
QueueDestroy(&q);
}
3.二叉树的相关练习
3.1 二叉树节点个数
通过全局变量进行计数,每到一个结点就总数++
//全局变量计数
int size = 0;
int TreeNodeNum(BTNode\* root)
{
if (root == NULL)
{
return 0;
}
size++;
TreeNodeNum(root->left);
TreeNodeNum(root->right);
return size;
}
3.2 二叉树的高度
一直递归到最后一层,根据左右子树的高度进行比较加一获取当前结点的高度。
int TreeHeight(BTNode\* root)
{
if (root == NULL)
{
return 0;
}
int Lheight = TreeHeight(root->left);
int Rheight = TreeHeight(root->right);
return Lheight >= Rheight ? Lheight + 1 : Rheight + 1;
}
3.3 二叉树叶子节点个数
判断当前结点不为空且左右孩子都为空时就为叶子结点。
int LeafNodeNum(BTNode\* root)
{
if (root == NULL)
{
return 0;
}
if (root->left == NULL&&root->right == NULL)
{
return 1;
}
return LeafNodeNum(root->left) + LeafNodeNum(root->right);
}
3.4 二叉树第K层节点个数
大致思路与叶子节点一样,主要判断条件发生了变化。而是当 K 变成 1 时就计数。
int LayerKNum(BTNode\* root, int k)
{
if (root == NULL)
{
return 0;
}
if (k == 1)
{
return 1;
}
k--;
return LayerKNum(root->left, k) + LayerKNum(root->right, k);
}
3.5 二叉树查找值为x的节点
BTreeNode\* BinaryTreeFind(BTreeNode\* root, BTreeNodeType x)
{
BTreeNode\* ret1 = NULL;
BTreeNode\* ret2 = NULL;
if (root == NULL)
{
return NULL;
}
if (root->data == x)
{
return root;
}
ret1 = BinaryTreeFind(root->left, x);
if (ret1)
return ret1;
ret2 = BinaryTreeFind(root->right, x);
if (ret2)
return ret2;
}
3.6 判断二叉树是否是完全二叉树
大致思路是与层序遍历一致的,同样要使用队列来进行辅助,还是先一层一层的将结点入、出队列,当遇到空结点时停止入队列。然后再判断队列中是否都为空结点,若都是空结点,则为完全二叉树,反之不为完全二叉树。
int BinaryTreeComplete(BTNode\* root)
{
Queue q;
QueueInit(&q);


**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
* root)
{
Queue q;
QueueInit(&q);
[外链图片转存中...(img-KCQ86K5T-1714635732248)]
[外链图片转存中...(img-2axPYLUK-1714635732249)]
**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
2万+

被折叠的 条评论
为什么被折叠?



