2024年【数据结构】二叉树详解(下篇)(1)

void Swap(HPDataType\* left, HPDataType\* right)
{
	HPDataType temp = \*left;
	\*left = \*right;
	\*right = temp;
}

void AdjustDown(Heap\* hp, int n, int parent)
{
	int child = parent \* 2 + 1;
	while (child < n)
	{
		if (child + 1 < n&&hp->array[child] > hp->array[child + 1])
		{
			child += 1;
		}
		if (hp->array[child] < hp->array[parent])
		{
			Swap(&hp->array[child], &hp->array[parent]);
			parent = child;
			child = parent \* 2 + 1;
		}
		else
		{
			return;
		}
	}
}

void HeapCreate(Heap\* hp, HPDataType\* a, int n)
{
	assert(hp);
	hp->array = (HPDataType\*)malloc(sizeof(HPDataType)\*n);
	if (hp->array == NULL)
	{
		return;
	}
	memcpy(hp->array, a, sizeof(HPDataType)\*n);
	hp->size = hp->capacity = n;
	
	//先建小堆(3个元素)
	for (int root = (n - 2) / 2; root >= 0; root--)
	{
		AdjustDown(hp, n, root);
	}
	
	//再将剩余7个元素与根结点比较插入
	for (int i = n; i < 10; i++)
	{
		//取前三大元素,建小堆,大于堆顶元素进行交换,判断,调整
		if (a[i]>hp->array[0])
		{
			Swap(&a[i], &hp->array[0]);
			AdjustDown(hp, 3, 0);
		}
	}
}

void Test()
{
	int arr[10] = { 5, 8, 1, 6, 3, 0, 2, 7, 4, 9 };
	Heap hp;
	HeapCreate(&hp, arr, 3);
	for (int i = 0; i < 3; i++)
	{
		printf("%d ", hp.array[i]);
	}
	printf("\n");

}

二、二叉树链式结构的实现

1.二叉树的结构

结点类型,包括左右孩子指针以及该结点的数值域

typedef struct BTNode
{
	struct BTNode\* Lchild;
	struct BTNode\* Rchild;
	BTNDataType data;
}BTNode;

在这里插入图片描述

2.二叉树的遍历

二叉树的遍历是指按某条搜索路径访问树中的每个结点,使得每个结点均被访问每一次,而且仅访问一次。由于二叉树是一种非线性结构,每个结点都可能有两棵子树,因而需要寻找一种规律,以便使二叉树上的结点能排列在一个线性队列上,进而便于遍历。
  由二叉树的递归定义可知,遍历一棵二叉树便要决定对根结点 N、左子树L 和右子树R 的访问顺序。按照先遍历左子树再遍历右子树的原则,常见的遍历次序有先序 (NLR)、中序 (LNR)和后序(LRN)三种遍历算法,其中 “序” 指的是根结点在何时被访问。

2.1 前序遍历

访问根结点,先序遍历左子树,先序遍历右子树

void PreOrder(BTNode\* root)
{
	if (root == NULL)
	{
		return;
	}
	printf("%d ", root->data);
	PreOrder(root->left);
	PreOrder(root->right);
}

2.2 中序遍历

中序遍历左子树,访问根结点,中序遍历右子树

void InOrder(BTNode\* root)
{
	if (root == NULL)
	{
		return;
	}
	InOrder(root->left);
	printf("%d ", root->data);
	InOrder(root->right);
}

2.3 后序遍历

后序遍历左子树,后序遍历右子树,访问根结点

void PostOrder(BTNode\* root)
{
	if (root == NULL)
	{
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);
	printf("%d ", root->data);
}

2.4 层序遍历

除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
  对于目前知识储备,我们只能选择通过队列来完成对二叉树的层序遍历,大致思路就是先将根结点入队,然后在其出队的同时将它的两个孩子结点入队,一直持续到队列为空(当孩子结点为空时不入队)

主要代码:

typedef struct BinaryTreeNode\* QDataType;

void LeverOrder(BTNode\* root)
{
	Queue q;
	QueueInit(&q);
	int leverSize = 0;
	//先入根结点
	if (root != NULL)
	{
		QueuePush(&q, root);
		leverSize = 1;
	}
	while (!QueueEmpty(&q))
	{
		//此处的leverSize记录的是每一行的结点个数
		while (leverSize--)
		{
			//注意:在这里,对头的返回值类型本应该是 int 类型的,但是为了后续的结点访问,
			//要将其强制转化为二叉树结点类型
			BTNode\* front = QueueFront(&q);
			printf("%d ", front->data);
			QueuePop(&q);
			if (front->left)
			{
				QueuePush(&q, front->left);
			}
			if (front->right)
			{
				QueuePush(&q, front->right);
			}
		}
		printf("\n");
		leverSize = QueueSize(&q);
	}
	printf("\n");
	QueueDestroy(&q);
}

3.二叉树的相关练习

3.1 二叉树节点个数

通过全局变量进行计数,每到一个结点就总数++

//全局变量计数
int size = 0;
int TreeNodeNum(BTNode\* root)
{
	if (root == NULL)
	{
		return 0;
	}
	size++;
	TreeNodeNum(root->left);
	TreeNodeNum(root->right);
	return size;
}

3.2 二叉树的高度

一直递归到最后一层,根据左右子树的高度进行比较加一获取当前结点的高度。

int TreeHeight(BTNode\* root)
{
	if (root == NULL)
	{
		return 0;
	}
	int Lheight = TreeHeight(root->left);
	int Rheight = TreeHeight(root->right);
	return Lheight >= Rheight ? Lheight + 1 : Rheight + 1;
}

3.3 二叉树叶子节点个数

判断当前结点不为空且左右孩子都为空时就为叶子结点。

int LeafNodeNum(BTNode\* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL&&root->right == NULL)
	{
		return 1;
	}
	return LeafNodeNum(root->left) + LeafNodeNum(root->right);
}

3.4 二叉树第K层节点个数

大致思路与叶子节点一样,主要判断条件发生了变化。而是当 K 变成 1 时就计数。

int LayerKNum(BTNode\* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	k--;
	return LayerKNum(root->left, k) + LayerKNum(root->right, k);
}

3.5 二叉树查找值为x的节点

BTreeNode\* BinaryTreeFind(BTreeNode\* root, BTreeNodeType x)
{
	BTreeNode\* ret1 = NULL;
	BTreeNode\* ret2 = NULL;
	if (root == NULL)
	{
		return NULL;
	}
	if (root->data == x)
	{
		return root;
	}
	ret1 = BinaryTreeFind(root->left, x);
	if (ret1)
		return ret1;
	ret2 = BinaryTreeFind(root->right, x);
	if (ret2)
		return ret2;
}


3.6 判断二叉树是否是完全二叉树

大致思路是与层序遍历一致的,同样要使用队列来进行辅助,还是先一层一层的将结点入、出队列,当遇到空结点时停止入队列。然后再判断队列中是否都为空结点,若都是空结点,则为完全二叉树,反之不为完全二叉树。

int BinaryTreeComplete(BTNode\* root)
{
	Queue q;
	QueueInit(&q);


![img](https://img-blog.csdnimg.cn/img_convert/f213725cbb6eeaf5ab687cfc54528108.png)
![img](https://img-blog.csdnimg.cn/img_convert/4b67838790223026dd96121e01c36062.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

* root)
{
	Queue q;
	QueueInit(&q);


[外链图片转存中...(img-KCQ86K5T-1714635732248)]
[外链图片转存中...(img-2axPYLUK-1714635732249)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>