数据仓库(基础篇)——基于维度建模思想_数据仓库维度穷举举例(4)

  • 方便沟通交流;
  • 提高排查问题的效率;
  • 提高数据开发的效率;
  • 生产结果可复用;
  • 复杂任务解耦;
  • 提高数据质量,避免数据口径不一致等问题;
  • 减少存储成本和计算成本。

一、数据仓库起因

1、企业信息化建设带来更多的数据的沉淀

从阿里开始,许多公司都在进行数字化转型,数据化转型是由于企业的信息化的发展,导致信息发展的水平越来越高。在信息化建设的过程
当中,企业会产生非常多的数据,带来了整个企业的数据沉淀。

2、人们对数据更多的依赖与思考

第一点:现在,企业当中的一些经营管理层或者领导,经常会定一些KPI指标。包括我们在医院进行身体检查 ,体检报告上也会有相对应的指标来说明我们的身体状况。同样的,如果我们想知道一个企业的经营状态,我们需要对数据有一定的依赖。
下面为某公司对数据的应用,大体上分为以下几种。

  1. 描述统计:一个比较基础的应用,大多数公司都具有的技术栈。
  2. 诊断:比如说在经营管理中,每隔一个月或者一天看一次报表,这样其滞后性就比较严重。如果在实施的过程中进行监控,这样对企业来说可能会更有好处。

第二点:基于历史的一些数据,对于未来做一些预测,比如说一些公司经常做的舆情分析,抓去一些市面上的数据,对于风险点这样的一个把控,导致了人们对于数据更多的依赖于思考。

3、数据使用过程中遇到的一些痛点和难点
比较常见的如数据当中的黑夹子。以某公司为例,从研发到销售到生产整个全链路的传统型企业。在供应链端,如果我们想看一些前端的销售数据,后端的数据,以及售后服务等,这些数据我们是看不到的。因为我们的数据是分散在各个系统当中,这是我们的一个数据痛点,数据孤岛就是这样产生的。我们的信息化建设也是分阶段在不同时间去建立的,如果是传统型的厂商,还会有不同的厂商进行建立,这样的结果是会导致数据结构上的不一致,比如说企业上数据口径上的不一致等等这些问题。

以上的这些大致就是数据仓库的起因,当然此处并非专业定义,仅为个人理解。

二、数据仓库的特点

1.面向主题
数据仓库是OLAP(联机分析处理)面向分析的一个产物,它与传统的业务数据库相比,其是一个事务性的数据库。数据仓库为了让分析更加全面,包括能够快速的响应分析的需求,所以其是面向主题,分门别类的一种管理。

2.集成的
不仅把整个企业的数据存放到一起,还需要把整个企业各个生产过程中不同的系统,不同的业务线,不同的板块进行整合,把其中的数据进行集成与拉通。

举例说明:比如说某公司正在进行售后服务2.0的建设,当前面临的问题是,之前并没有数据仓库或者数据中台这样一个概念。数据分散在各个地方。如果我接到了客服的一个售后的一个客户电话,我想知道这个人买了哪些产品,这个产品当前是在生产还是已经收到过了等等各种情况。我们是否需要知道整个的关注客户的订单的全生命周期,所以说数据仓库的另一个重要特点是集成的。

3.相对稳定的
整个数据仓库是相对稳定的,数据仓库的模型不能随意改变。如果数据仓库的模型不稳定,是不利于公司进行数据分析于数据决策的。

4.反应历史变化的
数据仓库是反应整个历史变化的,业务系统的数据在很多种情况下如果想再次查阅历史数据,其对整个系统的压力以及整个分析的逻辑来说是比较麻烦的,数据仓库相对而言也是为了解决这个痛点。比如说传统的离线数仓是T+1这样一个结构,现在发展成为实时数仓。它都是可以反应我们企业的历史变化的这样一个特点的。

三、数据仓库常见的概念

1.六大概念

分层: 关于分多少层ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值