数据结构与算法-(7)---栈的应用-(3)表达式转换,面试的总结语

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新HarmonyOS鸿蒙全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img

img
img
htt

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上鸿蒙开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注鸿蒙)
img

正文

6a78491801a74bbd8d932659b06e11db.gif#pic_center

6e2e58c7c0eb4abba046a09b8b95d377.png

回顾 🧸

“温故而知新”

通过思维导图回顾一下我们学了什么,我们先学了什么是线性结构,栈(Stack)是一种抽象数据类型的线性结构,栈是什么,栈的特点以及操作步骤,我们还可以通过列表去实现栈,不过不同的栈顶其对应的时间复杂度也不同,了解完栈的基础知识点后我们开始学习栈的应用,栈可以用于

「(1)匹配符号(Balance Symbols),

(2)进制转换(Decimal conversion),

(3)表达式转换(Experssion conversion)」

(1) 和 (2) 我们已经在前面的文章写过了:不记得知识点或者对前面内容感兴趣的小伙伴可以点击👉

🔗(1)http://t.csdnimg.cn/Ypv3q

🔗(2)http://t.csdnimg.cn/OLIJW

对应专栏数据结构与算法学习系列专栏🌸🔗:http://t.csdnimg.cn/6BQDo

cf314ae038f54056a0c28bf4408d9fa9.png

中缀表达式🀄

我们通常看到的表达式如:B*C , 很容易就知道是B乘以C

像  *  这种操作符( operator ) 介于操作数 ( operand )中间的表示法,称为 “中缀” 表示法.

But sometimes 中缀表示法会 case confusion(引起混淆),如 “A + B * C”

是A+B然后再乘以C  还是B*C然后再加A?

为了消除混淆,人们引入"优先级"的概念

规定高优先级的操作符先计算
相同优先级的操作符从左到右依次计算这样A+B*C就没有疑义是A加上 B与C的乘积
同时引入了括号来表示强制优先级括号的优先级最高,而且在嵌套的括号中,内层的优先级更高这样(A+B)*C就是A与B的和再乘以C


全括号表达式与前后缀表达式的关系🎡

虽然人们已经习惯了这种表示法,但计算机处理最好是能明确规定所有的计算顺序,这样无需处理复杂的优先规则
于是,我们引入全括号表达式:

在所有的表达式项两边都加上括号A+B*C+D,应表示为((A+(B*C))+D)
可否将表达式中操作符的位置稍移动一下?

例如中缀表达式A+B操作符移到前面,变为"+AB"
或者将操作符移到最后,变为“AB+
我们就得到了表达式的另外两种表示法:"前缀"和“后缀”表示法以操作符相对于操作数的位置来定义

这样A+B*C将变为前缀的"+A***BC****"后缀的"ABC*****+"为了帮助理解,子表达式加了下划线**

前缀和后缀表达式中,操作符的次序完全决定了运算的次序,不再有混淆

所以在很多情况下,表达式在计算机中的表示都避免使用复杂的中缀形式

让我们先看看这些前中缀和后缀表达式

中缀表达式前缀表达式后缀表达式
A + B * C + D+ + A * B C DA B C * + D +
( A + B ) * ( C + D )* + A B + C DA B + C D + *
A * B + C * D+ * A B * C DA B * C D * +
A + B + C + D+ + + A B C DA  B + C + D +

想必初看的小伙伴会觉得眼花缭乱,但是不要着急,我们接下来会一一讲解.

一定得有个算法来转换任意复杂的表达式

为了分解算法的复杂度,我们从“全括号中缀表达式入手我们看A+B*C,

如果写成全括号形式:(A+(B*C)),显式表达了计算次序我们注意到每一对括号,都包舍了一组完整的操作符和操作数,让我们看看如何将其转换成前后缀表达式吧~

0d102a3763224d53a976a65a93d18fb0.png


中缀表达式转换为前后缀形式的方法🪐

✨Summary:

(1)将中缀表达式转换为全括号形式

(2)将所有的操作符移动到子表达式所在的 左括号(前缀prefix) 或者 右括号(后缀postfix) 处~

替代之,再删除所有的括号.


通用的中缀转后缀算法⭐

在中缀表达式转换为后缀形式的处理过程中,操作符比操作数要晚输出

所以在扫描到对应的第二个操作数之前,需要把操作符先保存起来

而这些暂存的操作符,由于优先级的规则还有可能要反转次序输出.

在A+B*C中,+虽然先出现,但优先级比后面这个*要低,所以它要等*处理完后,才能再处理.

这种反转特性,使得我们考虑用保存暂时未处理的****操作符

再看看(A+B)*C,对应的后缀形式是AB+C*
这里+的输出比*要早,主要是因为括号使得+的优先级提升,高于括号之外的*

根据上面的“全括号”表达式,后缀表达式中操作符应该出现在左括号对应的右括号位置

所以遇到左括号,要标记下,其后出现的操作符优先级提升了,一旦扫描到对应的右括号,就可以马上输出这个操作符

总结:

在从左到右扫描逐个字符扫描中缀表达式的过程中,采用一个来暂存未处理的操作符
这样,栈顶的操作符就是最近暂存进去的,当遇到一个新的操作符,就需要跟栈顶的操作符比较下优先级,再行处理—>新符号和栈顶对比,新的高,就入栈(因为取时也先取);       新的低,就把栈顶出栈,让栈顶的先运算.

利用中缀转后缀的操作流程🪂

后面的算法描述中,约定中缀表达式是由空格隔开的一系列单词(token)构成

操作符单词包括*/±()

而操作数单词则是单字母标识符A、B、C等。

**1.首先,创建空栈opstack用于暂存操作符,**空表postfixList用于保存后缀表达式

2.将中缀表达式转换为单词(token)列表

A + B*C = split => [‘A’, ‘+’, ‘B’, ’ * ', ‘C’]

4d52ca2a00de4600b398de060cd69776.png

流程示意图:

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注鸿蒙)
[外链图片转存中…(img-7BgoMizX-1713195697028)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值