大数据面试求职经验总结_大数据专家面试

3.专业技能模板:

注:主要学会用词搭配,内容根据自己个人情况及招聘岗位删改。

模板1

■ 语言开发

1.扎实的Java基础,理解IO,多线程,集合,熟练使用Java,Scala进行开发;

2.掌握常用的数据结构和算法,如栈、队列、递归和常用排序算法;

■ 计算引擎

1)熟练掌握MapReduce的原理和运作流程,对海量的数据进行分析;

2)熟练掌握Spark Core和Spark SQL对离线数据进行相应的分析;

3)熟练掌握Spark Streaming实现对实时数据进行分析;

4)熟练掌握HQL语句的编写,进行业务分析。

■ 存储工具

2)熟练掌握Hbase的架构,以及相对应组件的工作原理,能够根据业务的不同设计相应的表,并且进行相应的优化,设计相应的二级索引;

3)熟练掌握Redis的工作原理,能够对相应的数据进行快速的操作;

4)熟练掌握MySQL的工作原理,能够使用开发语言进行数据库的连接,熟练的使用SQL语句对相应的业务进行分析。

■ 相关组件

1)对Hadoop生态圈有详细的理解,能够独立完成Hadoop集群的搭建和 Hadoop系统架构的搭建;

2)熟练掌握HDFS分布式文件系统原理,实现对数据的合理存储;

3)熟练掌握Yarn(分布式资源管理)架构和工作原理,熟悉资源分配的整 个流程;

4)熟练掌握Flume的工作机制,内部的运作流程。实现相应的配置,实现数 据的拉取;

5)熟练掌握Sqoop(SQL-to-Hadoop)的工作的原理,运作流程,实现数据 在各组件之间的传输;

6)熟练掌握Kafka分布式消息队列的架构。能够使用Kafka和Flume结合对 实时数据进行简单的处理;

7)熟练掌握Zookeeper(分布式协作服务)的架构,工作原理;

8)能够使用Oozie(工作流程调度器)进行程序流式运行;

9)掌握Git管理工具。

模板2

■ 语言

1.Java

•熟悉JVM的垃圾清理机制和调优,理解Java多线程的技术;

•拥有OOP的思想,能够熟练地使用Java语言进行MapReduce以及Spark的开发。

2.能够熟练使用Scala语言进行Spark的业务开发。

3.熟悉Linux命令,能够编写Shell脚本。

4.精通SQL语句,能够进行Hive和SparkSQL的开发。

■ 框架

1.Hadoop

•熟悉HDFS的读写流程,并能用其进行海量数据的存取;

•熟悉MapReduce的运行流程,并能用其进行海量数据的分析;

•熟悉Hive的原理,能够熟练使用hql语句以及自定义UDF进行Hive的数据分析,能够进行Hive的调优;

•了解ZooKeeper的原理,能够使用ZooKeeper对集群进行协同服务;

•理解HBase的特性,能够使用HBase进行数据的存储,能够完成HBase的表设计;

•熟悉Flume的框架,能够使用Flume实现不同场景下的数据采集;

•熟知Sqoop的原理,能够使用Sqoop实现不同场景下的数据传输。

2.Spark

•熟悉Spark的框架以及Spark任务的执行流程;

•熟悉RDD的属性,能够使用RDD算子进行Spark Core的开发;

•精通SQL,能够进行Hive on Spark以及SparkSQL的开发;

•能够使用Spark Streaming进行实时处理;

•理解消息中间件Kafka的原理与结构,能够完成Kafka与Spark的对接。

■ 工具

1.熟悉IEDA/Eclipse开发工具,熟悉Git版本控制工具;

2.熟悉数据库连接工具Navicat和Linux系统远程连接工具MobaXterm;

3.熟悉数据仓库建模工具PowerDesigner,能够完成ODS层,DW层以及DM层的设计。

■ 数据库

1.精通SQL语句,熟悉MySQL数据库;

2.熟悉Redis的数据类型以及常规操作,了解Redis的持久化和主从配置。

■ 其他

1.熟悉数据仓库的建模,掌握星型模型和雪花模型的设计;

2.了解二叉树、红黑树的排序算法,了解二叉树的遍历算法。

简历模板:

可以使用招聘软件上的在线简历,填写后导出,也可以在专业简历网站上编写,如五百丁、超级简历等,不建议直接在word模板中改,容易出现格式错误。

其他注意事项:

1.简历中的学校课程校招可以选择性填写 ,有社招经验的不需要。

2.简历内容充实时自我评价可不写。

3.简历中的照片可以不加,留神秘感。

4.求职是双向选择。

二、常见问题

三、求职软件

互联网行业首推招聘网站:BOSS、拉勾

注意:一定要在找工作面试前提前写好在线简历,如果简历符合公司要求,HR会主动联系你投递简历。

校招要提前去公司官网投递简历,尽量熟人找内推。

四、知识体系

每个岗位的知识体系不同,这里我熟悉的以大数据为例,知识点很多,但不一要全会,围绕自己简历中技能或项目班包含的技术,挑自己的强项写进简历中。

1.大数据体系

**数据采集传输:**Flume(进)  Kafka(缓冲池)  Sqoop(出)  Logstash – ELK  Data X – 阿里

数据存储:

MySQL – 模拟java后台的数据

HDFS – Hive

HBase – kylin,

实时的kv格式数据  Redis – 缓存  MongoDB – 前端

数据计算:

Hive – 底层是mr

Tez – 基于内存

Spark – 计算引擎(多表)

Flink – 支持实时的单条数据处理与批处理(多表,被阿里收购,取名Blink,添加了很多新特性)

Strom – 实时处理(old)

数据查询:

Presto – 基于内存(快速查询,Apache)

Druid – 德鲁伊(只支持单表、宽表查询)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

中…(img-T528q880-1714192817375)]
[外链图片转存中…(img-DBteOh9z-1714192817376)]

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

  • 27
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值