大数据最全2024大数据面试题+附答案

  1. Hive中的Index是什么?有什么作用?
  2. Hive的MapReduce任务支持哪些输入格式?
  3. Hive中的MapReduce任务输出格式有哪些?
  4. Hive中的MapReduce任务支持哪些压缩格式?
  5. Hive中的MapReduce任务支持哪些SerDes?
  6. Hive中的MapReduce任务支持哪些执行引擎?
  7. 在Hive中如何控制数据访问权限?
  8. 如何在Hive中优化查询性能?
  9. Hive中的查询优化方式有哪些?
  10. Hive中的数据倾斜如何解决?
  11. Hive中的数据倾斜如何预防?
  12. Hive中的数据倾斜如何处理?
  13. Hive中的分布式查询是如何工作的?
  14. 在Hive中如何处理空值?
  15. Hive中的数据压缩如何实现?
  16. 如何在Hive中读写Parquet文件?
  17. 如何在Hive中读写ORC文件?
  18. Hive中是如何处理多行日志数据的?
  19. Hive中的函数有哪些?
  20. Hive中的自定义函数如何实现?
  21. Hive中的快照查询是什么?
  22. Hive中的动态分区是什么?
  23. Hive中的动态分区与静态分区有什么区别?
  24. Hive中的多列分区是什么?
  25. Hive中的数据类型转换是如何实现的?
  26. Hive中的比较运算符有哪些?
  27. Hive中的逻辑运算符有哪些?
  28. Hive中的Sanity Check是什么?
  29. Hive中的自定义InputFormat如何实现?
  30. Hive中的自定义OutputFormat如何实现?
  31. Hive中的数据库管理如何实现?
  32. Hive中的HQL是什么?
  33. Hive中的JDBC驱动是什么?
  34. Hive中的ODBC驱动是什么?
  35. Hive中的JPA支持是什么?
HIVE 答案:
  1. Hive是Apache Hadoop生态环境中的一个数据仓库软件,它提供了一种类似于SQL的查询语言,称为HiveQL,使得开发人员能够使用类SQL的语言来处理大规模的数据集。Hive具有处理结构化和半结构化数据的能力,可以将查询转换为Hadoop MapReduce任务来执行。
  2. Hive是建立在Hadoop之上的一个数据仓库软件,它提供了一种类似于SQL的查询语言,使得开发人员能够使用类SQL的语言来处理大规模的数据集。
  3. Hive支持的文件格式有包括文本文件(默认格式)、序列文件、RCFile、ORC等。
  4. Hive具有SQL的语法和语义,支持高度扩展性和自定义UDF,易于部署和使用。
  5. Hive需要将查询转换为MapReduce任务,并且由于其使用MapReduce任务来处理数据,因此处理速度可能较慢。
  6. Hive的元数据存储在一个RDBMS或Hive自己的Metastore中,元数据包括表名、表列名、分区等信息。
  7. Hive支持包括数字类型、字符串类型、布尔类型、日期类型、时间戳类型等在内的多种数据类型。
  8. 分区是指将表按照某一列或多列数据分成多个文件或文件夹的方法,使得数据能够更好地被组织和管理,提高查询效率。
  9. UDF代表User Defined Functions,是用户可以自定义的函数。Hive支持UDF、UDAF、UDTF等类型的自定义函数。
  10. Hive中的join操作使用MapReduce任务来执行。在执行join操作时,每个Map任务获取一个表的一部分数据,然后将该数据按照指定的join条件传递给相应的Reduce任务进行处理。
  11. Hive中的排序和聚合操作使用MapReduce任务来执行。在执行排序和聚合操作时,Map任务会将部分数据进行处理,然后将结果发送到Reduce任务进行进一步的处理。
  12. 在Hive中,将查询转换为MapReduce任务,然后由Hadoop集群进行执行。
  13. Bucketing是指按照某一列或多列数据将表分割成更小的文件的方法,类似于分区。Bucketing可以有效地减少MapReduce任务的数量,并且可以提高查询的效率。
  14. Sampling是指在一个代表数据集的子集上执行查询的方法,这样可以在不处理所有数据的情况下得到较为准确的结果,从而可以加快查询速度。
  15. Partitions是指将表按照某一列或多列数据分成多个文件或文件夹的方法,而Buckets是指在一个分区中使用Hash函数将表分成更小的块。Partitions可以更好地组织和管理数据,而Buckets可以减少MapReduce任务数量,提高查询效率,具体使用哪一个取决于数据大小和查询性能要求等因素。
  16. 在Hive中,Index是一种数据结构,用于提高查询效率,使得查询可以更快地定位到满足查询条件的行。在Hive中,支持基于字段或复合字段的索引操作。
  17. Hive支持的输入格式包括文本、序列文件、ORC等格式。
  18. Hive支持的输出格式包括文本、序列文件、ORC等格式。
  19. Hive支持的压缩格式包括默认的Gzip、LZO、Snappy、Zlib等。
  20. Hive支持的SerDes包括JSON、CSV、Parquet、ORC等。
  21. Hive中的执行引擎包括Hive MapReduce、Apache Tez、Apache Spark等。
  22. 在Hive中,可以使用用户和表级别的权限控制来限制数据访问权限。可以通过GRANT和REVOKE命令进行授权和取消授权。
  23. 在Hive中,可以通过对表进行分割、压缩数据、使用Bucketing等方式来优化查询性能。
  24. Hive中的查询优化方式包括使用合适的压缩格式、使用分区和Bucketing来优化查询、在查询中合适使用Sort By、Distribute By、Order By、Cluster By等操作、使用合适的配置来保证Hive在执行时具有更好的性能。
  25. 如果数据倾斜导致MapReduce任务无法完全并行执行,则可以进行数据重分布、使用SSDJ(Skew Join、Skew Data Join)等方式来解决数据倾斜问题。
  26. 在Hive中,可以使用Bucketing等方式来预防数据倾斜,还可以在数据导入时进行预计算和数据裁剪等操作。
  27. 如果出现数据倾斜,可以使用MapReduce任务的Combine功能、较大的Bucket Size等方式来处理数据倾斜问题。
  28. Hive的分布式查询是指在一个分布式计算集群中对大量数据进行并行处理的一种查询方式。在分布式查询中,查询被划分为多个任务,然后由不同的机器并行执行。
  29. 如果在Hive中遇到空值,可以使用IS NULL或IS NOT NULL操作符排除或筛选出空值。
  30. 在Hive中,数据压缩可以通过在数据导入时使用压缩格式等方式来实现,目的是减少磁盘空间的占用,提高I/O操作的效率。Hive支持的压缩格式包括默认的Gzip、LZO、Snappy、Zlib等。
  31. 在Hive中读取和写入Parquet文件需要使用ParquetSerDe库和相应的Hive参数设置。
  32. 在Hive中读取和写入ORC文件需要使用ORCSerDe库和相应的Hive参数设置。
  33. 在Hive中,可以使用RegEx和非结构化文本来处理多行日志数据。
  34. 在Hive中,支持多种类型的函数,包括数学函数、日期函数、字符串函数、集合函数等。
  35. 在Hive中,可以使用Java、Scala、Python等语言来实现自定义函数。
  36. 在Hive中,快照查询是指使用查询语句返回表在特定时间点的数据情况。这需要使用Hive的快照表特性。
  37. 在Hive中,动态分区是指在将数据插入到分区表时,动态提取表数据中的字段作为分区的目录结构。
  38. 静态分区是指按照某一列或多列数据将表分割成多个文件或文件夹的方法,而动态分区是指根据数据中的某一列或多列动态地生成分区目录结构。
  39. Hive中的多列分区是指按照多个列的取值组合对表进行分割的方法,这种方法可以提高数据的查询效率。
  40. Hive中的数据类型转换可以通过函数进行实现。例如,使用CAST函数可以将字符串类型转换为数字类型。
  41. Hive中的比较运算符包括等于、不等于、大于、小于、大于等于、小于等于等。
  42. Hive中的逻辑运算符包括AND、OR、NOT等。
  43. 在Hive中,Sanity Check是指用于检查查询语句中是否包含明显错误的方法。默认情况下,Hive会在执行查询之前执行Sanity Check。
  44. 在Hive中,实现自定义InputFormat需要实现InputFormat接口,该接口提供了InputSplit和RecordReader的抽象方法。
  45. 在Hive中,实现自定义OutputFormat需要实现OutputFormat接口,该接口提供了RecordWriter和OutputCommitter的抽象方法。
  46. 在Hive中,数据库管理可以使用DDL和DML语句来创建和管理数据库和表。
  47. HiveQL是Hive自带的一种基于SQL的查询语言,它可以让开发人员使用类SQL的语言来处理大规模的数据集,包括SELECT、FROM、WHERE、GROUP BY、ORDER BY等SQL语句。
  48. Hive中的JDBC驱动是一种让Java应用程序能够连接并访问Hive的接口。
  49. Hive中的ODBC驱动是一种让C++、C#、PHP、Python以及其他ODBC兼容的应用程序能够连接并访问Hive的接口。
  50. 在Hive中,JPA支持是指JPA标准接口与Hive Metastore的结合使用。使用JPA,开发人员可以使用Java对象来表示Hive表。

3.Spark面试题50道

  1. 什么是 Spark?
  2. Spark 和 Hadoop的区别是什么?
  3. Spark 中的 RDD 是什么?
  4. RDD 可以持久化,具体是怎么实现的?
  5. Spark 中的累加器是什么?
  6. Spark 中的广播变量是什么?
  7. 什么是 Spark SQL?
  8. Spark Streaming 和 Spark 的区别是什么?
  9. 什么是 Spark MLlib?
  10. Spark 中的 GraphX 是什么?
  11. 如何调优 Spark 作业?
  12. Spark 中的 shuffle 是什么?
  13. Spark 作业的主要两个因素是什么?
  14. 什么是 Spark Standalone?
  15. Spark 中的 master 和 worker 是什么?
  16. Spark 中的 Executor 和 Driver 是什么?
  17. 什么是 Spark 运行模式?
  18. 如何在 Spark 中设置运行模式?
  19. 什么是线程池?
  20. Spark 中通过什么机制实现数据共享?
  21. Spark 中的数据分区是什么?
  22. Spark 中的算子都有哪些类型?
  23. 什么是 DAG?
  24. 如何使用 Spark 进行数据清洗?
  25. 什么是 Spark 缓存?
  26. Spark 中的 coalesce 和 repartition 联系和区别是什么?
  27. Spark 中的 map 和 flatMap 区别是什么?
  28. Spark 中的 filter 和 where 的区别是什么?
  29. Spark 中的 join 和 cogroup 区别是什么?
  30. Spark 是否支持多语言?
  31. Spark 支持哪些文件格式?
  32. Spark 中的并行度怎么设置?
  33. 什么是 Spark Checkpoint?
  34. 如何调试 Spark 作业?
  35. Spark 中的事件监听器是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>