Fox-1:3T token训练出1.6B的高性能小模型 | AIOLI: 让AI训练更高效,新型数据混合算法击败所有传统方法

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:

1、小而强大:Fox-1语言模型用3万亿token训练出1.6B的高性能

2、AIOLI: 让AI训练更高效,新型数据混合算法击败所有传统方法

1、Fox-1:3T token训练出1.6B的高性能小模型

最近,一个重磅级的小型语言模型Fox-1横空出世。虽然模型参数量只有1.67B,但它在多个基准测试中展现出了惊人的实力 - 在数学能力测试(GSM8k)上达到36.39%的准确率,在世界知识理解(MMLU)上也取得了43.05%的成绩,综合表现优于或持平同等规模的StableLM、Gemma等模型。

这个"小个子"为什么能有如此出色的表现?关键在于Fox-1采用了创新的三阶段课程学习方法,在3万亿个token的训练数据上进行渐进式学习。就像我们从小学到大学的学习过程一样,Fox-1也经历了从基础到进阶的训练过程,这让它能更高效地掌握语言知识。

在架构设计上,Fox-1也别出心裁。它采用了更深层的网络结构,扩展了词汇量,并使用了分组查询注意力(GQA)机制。这些创新不仅提升了模型性能,还保证了推理速度和计算效率。简单来说,它不仅"学得好",还"跑得快"。

值得一提的是,Fox-1团队将模型完全开源,采用Apache 2.0许可证发布。这意味着无论是研究人员还是开发者,都可以自由地使用和改进这个模型。在当前大语言模型动辄上百亿参数的背景下,Fox-1的出现为"平民化"AI提供了一个极具价值的选择。

论文标题:Fox-1 Technical Report

论文链接:https://arxiv.org/abs/2411.05281

2、AIOLI: 让AI训练更高效,新型数据混合算法击败所有传统方法

在大语言模型训练中,如何合理地混合不同类型的训练数据(如代码、科学文献、对话等)一直是一个关键问题。传统的数据混合方法表现不稳定,有时甚至不如最简单的均匀采样。最近,研究人员提出了一个突破性的解决方案——AIOLI算法,在6个数据集上全面超越了现有方法。

为什么传统方法效果不理想?研究团队通过建立统一优化框架发现,问题出在参数估计上。虽然现有方法的理论基础是合理的,但它们在实际应用中往往无法准确估计关键参数,导致性能表现不稳定。有趣的是,研究发现这些参数的偏差程度与方法的实际表现直接相关。

AIOLI算法的独特之处在于它能在训练过程中实时估计和调整混合参数。通过分析历史训练数据和动态混合比例,AIOLI可以更准确地预测不同数据组合的效果。在实验中,它平均提升了0.28个测试困惑度,最高提升达到0.439点,而且不需要额外的训练成本。

更令人兴奋的是,在计算资源受限的实际场景中,AIOLI表现更为出色。当使用短期训练结果来指导长期训练时,它能动态调整混合比例,在30个测试案例中的28个中都取得了显著提升,困惑度平均改善了1.202,这对于提高模型训练效率具有重要意义。

论文标题:Aioli: A Unified Optimization Framework for Language Model Data Mixing

论文链接:https://arxiv.org/abs/2411.05735

亲爱的读者,感谢您阅读到这里。正如我们探讨的语言模型一样,每个人都有自己的潜力和价值。认清自己,要么接受平凡,要么踏踏实实从 0 到 1 去积累资源。这世上从来没有简单的、一蹴而就的成功。无论是LLM的发展还是个人的成长,都需要持续不断的努力和积累。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值