在个人电脑上构建Llama与Dify集成的AI工作流:详细指南

本文简介

最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。

在这里插入图片描述

那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了,断网的时候也能使用AI。

刚好最近 Llama 3.1 发布了,本文就以 Llama 3.1 作为基础模型,配合 Dify 在本地搭建一套“Coze”。

跟着本文一步步操作,保证能行!

Dify是什么?

Dify 官网(difyai.com/) 的自我介绍:Dify 是开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。

在这里插入图片描述

动手搭建

在本地搭建这个平台很简单,其实 Dify文档(docs.dify.ai/v/zh-hans) 里都写得明明白白了,而且还有中文文档。

具体来说需要做以下几步:

  1. 安装 Ollama
  2. 下载大模型
  3. 安装 Docker
  4. 克隆 Dify 源代码至本地
  5. 启动 Dify
  6. 配置模型

接下来一步步操作。

安装 Ollama

简单来说 Ollama 是运行大语言模型的环境,这是 Ollama 的官网地址 (ollama.com/ ),打开它,点击 Download 按钮下载 Ollama 客户端,然后傻瓜式安装即可(一直点“下一步”)。

)

安装完成后就能看到一个羊驼的图标,点击运行它即可。

在这里插入图片描述

下载大模型

安装完 Ollama 后,我们到 Ollama 官网的模型页面(ollama.com/library)挑选一下模型。

在这里插入图片描述

这里面有很多开源模型,比如阿里的千问2,搜索 qwen2 就能找到它。

本文使用 Llama 3.1 ,这是前两天才发布的模型,纸面参数贼强。

打开 Llama 3.1 模型的地址(ollama.com/library/lla…),根据你需求选择合适的版本,我选的是 8b 版。

在这里插入图片描述

选好版本后,复制上图右侧红框的命令,到你电脑的终端中运行。

如果你还没下载过这个模型它就会自动下载,如果已经下载过它就会运行这个模型。

运行后,你就可以在终端和大模型对话了。

在这里插入图片描述

当然,我们不会这么原始的在终端和大模型对话,我们可是要搞工作流的!

安装 Docker

前面的基础步骤都搞掂了,接下来就要开始为运行 Dify 做准备了。

先安装一下 Docker ,打开 Docker 官网(www.docker.com/),根据你系统下载对应的安装包,然后还是傻瓜式安装即可。

在这里插入图片描述

克隆 Dify 源代码至本地

要使用 Dify ,首先要将它拉到你电脑里。

git clone https://github.com/langgenius/dify.git

在你电脑里找个位置(目录),用 gitDify 克隆下来,用上面这条命令克隆就可以了。

启动 Dify

进入 Dify 源代码的 docker 目录,执行一键启动命令:

cd dify/docker
cp .env.example .env
docker compose up -d

启动完成后,你的 docker 里就会看到这个

在这里插入图片描述

此时你在浏览器输入 http://localhost 就能看到这个界面。

在这里插入图片描述

首次打开 Dify 需要你设置一下管理员的账号。

然后用管理员账号登录,可以看到下面这个页面。

在这里插入图片描述

点击“创建空白应用”就可以创建聊天助手、文本生成应用、Agent、工作流。

在这里插入图片描述

我们点击"工作流"就能看到类似Coze的工作流编辑界面了。

在这里插入图片描述

配置模型

在配置工作流之前,我们需要给 Dify 配置大语言模型。

点击页面右上角的管理员头像,然后选择“设置”。

在这里插入图片描述

选择“模型供应商”,然后点击“Ollama”的卡片添加模型。

在这里插入图片描述

在添加 Ollama 模型时,弹窗的左下角有一个“如何继承 Ollama”的按钮,点击它会跳转到 Dify 官方文档教你怎么配置,但这里可能会有个小坑。

在这里插入图片描述

前面我们已经使用 OllamaLlama 3.1 运行起来了,在浏览器打开 `http://localhost:11434 看到这个界面证明模型运行成功。

在这里插入图片描述

此时在“添加 Ollama”将资料填写好,“基础 URL”里输入 http://localhost:11434 即可。

在这里插入图片描述

如果你是 Mac 电脑,填入以上资料有可能会报这个错:

在这里插入图片描述

An error occurred during credentials validation: HTTPConnectionPool(host='localhost', port=11434): Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0xffff5e310af0>: Failed to establish a new connection: [Errno 111] Connection refused'))

此时你需要在“基础 URL”里填入 http://host.docker.internal:11434

遇到问题可以看 Dify 官方文档的 FAQ。

在这里插入图片描述

添加完成后你就可以在模型列表里看到它了。

在这里插入图片描述

除了接入 Ollama 外,Dify 还支持接入 OpenAI 等闭源模型,但需要你去 OpenAI 那边买个服务。


在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 关于Dify工作流的文档指南 对于希望深入了解并应用Dify工作流的人来说,官方提供的资源是一个非常好的起点。具体来说,Dify文档中不仅涵盖了如何在个人电脑构建LlamaDify集成AI工作流的详尽指导[^1],还包含了有关创建面向自动化和批处理场景的应用程序的信息,这些应用场景包括但不限于高质量翻译、数据分析以及内容生成等[^3]。 #### 官方文档的重要性 官方文档(docs.dify.ai/v/zh-hans)提供了中文版本的支持材料,使得理解和实施过程更加便捷。这里记录了从基础安装到高级配置的各项操作说明,确保用户能够顺利地完成本地环境搭建,并进一步探索更复杂的特性。 #### 自动化能力概述 值得注意的是,通过利用Dify的强大功能,不仅可以依据特定的知识库和风格需求来组织语言,从而生产出条理分明的工作文件;同时也支持对已有文档的内容进行智能化处理——无论是提取关键信息还是概括全文主旨都能高效达成[^2]。 #### Agent工作流动态示例 为了更好地理解Agent工作流的实际运作方式及其潜力所在,可以参考具体的案例研究或教程文章。例如,在某些实例中展示了怎样借助此框架实现AI驱动的消息自动生成分发机制,特别是针对即时通讯工具如微信平台上的交互流程优化。 ```python # 这里展示了一个简单的Python脚本片段用于模拟调用API接口, # 实际开发时应参照官方文档中的最新指引来进行编码。 import requests def send_message_via_dify_api(message, recipient_id): url = "https://api.example.com/send" payload = { 'message': message, 'recipientId': recipient_id } response = requests.post(url, json=payload) return response.status_code == 200 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值