LoRA或许暗藏玄机 | 数字也会骗人?GPT-4都会说9.11>9.9,人工智能的“数学残障“有救了吗?

大模型领域的发展日新月异,每天都有许多有趣的论文值得深入品读。下面是本期觉得比较有意思的论文:

1、LoRA或许暗藏玄机

2、数字也会骗人?GPT-4都会说9.11>9.9,人工智能的"数学残障"有救了吗?

1、LoRA或许暗藏玄机

近期,一项重磅研究揭示了AI训练中广受欢迎的LoRA方法可能存在隐患。虽然LoRA能让模型训练时节省90%以上的显存,在目标任务上表现堪比完整微调,但研究人员发现这种"看似完美"的方法背后,或许并不如表面那么美好。

研究团队通过对模型权重矩阵的深入分析发现,LoRA训练出的模型中存在一些特殊的"入侵维度"(intruder dimensions)。这些维度就像是模型中的"异质成分",虽然不影响模型在目标任务上的表现,但会导致模型"忘记"更多预训练时学到的知识,并且在持续学习多个任务时表现不够稳定。

有趣的是,研究人员发现,当增加LoRA的秩(rank)时,这个问题会得到明显改善。特别是当秩达到64时,模型的行为会更接近传统的完整微调方法。这就像是在"节省"和"全面"之间找到了一个更好的平衡点。

这项研究给AI从业者带来了重要启示:在选择使用LoRA时,不能只关注显存占用和目标任务的表现,还需要考虑模型的泛化性能。同时,适当增加LoRA的秩可能是一个值得考虑的优化方向。这为如何更好地应用LoRA提供了新的思路。

论文标题:LoRA vs Full Fine-tuning: An Illusion of Equivalence

论文标题:https://arxiv.org/abs/2410.21228v1

2、数字也会骗人?GPT-4都会说9.11>9.9,人工智能的"数学残障"有救了吗?

大语言模型(LLM)近来可以解答奥数题、高考数学,甚至能做研究生难度的数学题。但你可能想不到,这些"数学天才"却在最基础的数字理解上栽了跟头——它们居然会认为9.11比9.9大!这就好比一个解题思路完全正确的学霸,却在最后的计算环节总是粗心大意地出错。

为了系统研究这个问题,来自北京大学等机构的研究人员开发了一个全面的测试基准。他们从小学到高中的数学课程中提取了4种数字表示方法(整数、小数、分数、科学计数法)和17种基础运算任务,创建了41组测试。这些看似简单的任务,即使是最新的GPT-4和Llama-3.1这样的顶尖模型也频频失手,尤其是在稍微复杂一点的计算(如乘法、取模)或处理整数之外的数字表示时。

研究团队尝试了三种改进方案:优化预训练阶段的数字处理能力、对现有模型进行微调、使用链式思考(CoT)技术。有趣的是,简单的微调确实能显著提升模型的数字理解能力,但那些专门设计用来增强数字处理的技巧反而会适得其反。这就像给一个已经形成思维定式的学生重新教授基础知识,反而会打乱他原有的认知体系。

这项研究揭示了一个重要但经常被忽视的问题:在人工智能追求解决高深数学问题的同时,最基础的数字运算能力反而成了"短板"。这就好比一个会解微积分的学霸,却在1+1等基础题上犯错。不过好消息是,研究人员已经开始认真对待这个问题,相信在不久的将来,AI的"数学残障"会得到根本性的改善。

亲爱的读者,感谢您阅读到这里。正如我们探讨的语言模型一样,每个人都有自己的潜力和价值。认清自己,要么接受平凡,要么踏踏实实从 0 到 1 去积累资源。这世上从来没有简单的、一蹴而就的成功。无论是LLM的发展还是个人的成长,都需要持续不断的努力和积累。如果您也对科技、人工智能和个人发展感兴趣,欢迎关注我们的微信公众号"LLM帝国"。在这里,我们将为您揭示LLM世界的帝国格局,带来最前沿的技术洞察和行业趋势,助您在这个LLM驱动的时代中找准定位,开拓属于自己的疆土。让我们携手探索LLM的无限疆界,在这个充满机遇与挑战的帝国中,共同成长,共创辉煌!

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值